

Agri Roots

e- Magazine

In Vitro Conservation and Germplasm Enhancement of Endangered Vegetables: A Biotechnological Approach

ARTICLE ID: 0189

Md Zeeshan Qaiser¹, Dr. Amit Kumar Singh²

¹M.Sc. Scholar, Department of Vegetable Science, College of Horticulture and Forestry (CAU, Imphal),
Pasighat, Arunachal Pradesh-791102

²Associate Professor, Department of Basic Science and Humanities, College of Horticulture and Forestry (CAU, Imphal), Pasighat, Arunachal Pradesh-791102

he loss of plant genetic resources, particularly in vegetable crops, poses a

serious threat to global food security and biodiversity. In vitro conservation. a biotechnology-based approach, offers a sustainable solution for preserving endangered vegetable species. This paper explores various in

vitro techniques, including micropropagation, cryopreservation, synthetic seed technology, and somatic embryogenesis, with a special focus on their applications in germplasm enhancement. Additionally, we discuss new technologies such as CRISPR-Cas9, artificial intelligence (AI) for tissue culture optimization, and cryoprotectants with nanomaterials. Recent advancements and successful case studies from

global conservation efforts are analyzed, highlighting the impact of biotechnology in securing vegetable

genetic diversity.

Vegetables contribute significantly to global nutrition, serving as primary of sources vitamins, minerals. antioxidants, and dietary fiber. However. several vegetable species face extinction due to climate

change, habitat destruction, genetic erosion, and overexploitation. Traditional conservation methods, such as seed banks and field gene banks, have limitations, including storage viability issues, disease susceptibility, and high maintenance costs (Tarraf & De Carlo, 2024).

To address these challenges, in vitro conservation has emerged as an efficient and sustainable alternative. In vitro techniques allow plant material to be stored under sterile, controlled environments for prolonged periods while maintaining genetic integrity. Moreover, biotechnological advancements have significantly improved the efficiency and applicability of these methods, making them highly relevant for the conservation of endangered vegetable crops.

This article provides a detailed discussion on in vitro conservation approaches, recent technological advancements, and successful case studies in vegetable germplasm enhancement.

Biotechnological Approaches for In Vitro Conservation of Vegetables

Micropropagation and Tissue Culture

Micropropagation is a widely used in vitro technique that enables the rapid multiplication of plants from small explants such as meristems, shoot tips, or nodal segments. The process involves several key steps:

- **1. Initiation Phase**: Selection and sterilization of explants to establish a contamination-free culture.
- **2. Multiplication Phase**: Induction of multiple shoots from explants using plant growth regulators (PGRs) such as benzylaminopurine (BAP), kinetin (KIN), and gibberellic acid (GA3).
- **3. Rooting Phase**: Development of strong root systems using indole-3-butyric acid (IBA) or naphthaleneacetic acid (NAA).
- **4. Acclimatization**: Gradual adaptation of plants to external conditions before field transplantation.

Advantages of Micropropagation in Conservation

 Allows mass multiplication of rare and endangered vegetable species.

- Produces disease-free planting material.
- Facilitates the conservation of species with recalcitrant seeds (e.g., garlic, onion, and asparagus).

Recent Developments

- Temporary Immersion Bioreactors (TIBs) have improved micropropagation efficiency by enhancing nutrient uptake and reducing contamination risks (Kim & Popova, 2024).
- Automated AI-based monitoring systems are now being integrated into tissue culture labs to optimize growth conditions in real-time.

Successful Case Study

 In vitro propagation of wild Capsicum species using BAP and kinetin-enriched media has led to 90% survival rates in field conditions, ensuring germplasm availability for breeding programs.

Cryopreservation for Long-Term Germplasm Storage

Cryopreservation is an advanced conservation technique where plant materials (shoot tips, embryos, seeds) are stored at -196°C in liquid nitrogen, ensuring long-term viability. The process involves:

- **1. Pre-Treatment**: Application of cryoprotectants such as glycerol, sucrose, DMSO to prevent ice crystal formation.
- **2. Cooling Phase**: Freezing samples using slow-cooling or vitrification methods.
- 3. Storage: Cryostorage in liquid nitrogen tanks.
- **4. Thawing and Regeneration**: Rewarming and regrowth under controlled conditions.

Advantages of Cryopreservation

- Maintains genetic stability for decades or even centuries.
- Preserves plant material without requiring periodic subculturing.
- Ideal for vegetables with short-lived seeds, such as onions and carrots.

Recent Innovations

- Nanoparticle-based cryoprotectants have significantly improved post-thaw regeneration rates in Brassica oleracea (Kim & Popova, 2024).
- Cryo-encapsulation of shoot meristems has enabled better survival of cryopreserved wild tomato species.

Successful Case Study

A cryopreservation protocol for wild tomato varieties (*Solanum pimpinellifolium*) demonstrated 85% regrowth efficiency, preserving valuable genetic traits for breeding programs.

Synthetic Seed Technology for Germplasm Distribution

Synthetic seeds consist of somatic embryos or shoot tips encapsulated in an artificial coating, typically made of sodium alginate or hydrogel. These seeds can be stored and transported like conventional seeds while remaining viable for extended periods.

Applications in Vegetable Conservation

- Used for difficult-to-propagate species, such as wild carrots and chili peppers.
- Allows the distribution of endangered germplasm across different regions.
- Reduces dependency on traditional seed banking.

Recent Innovations

- Hydrogel-based coatings with slow-release nutrients have improved seed viability and germination rates (Yalapuspita et al., 2024).
- Magnetic nanoparticles are now being integrated into synthetic seed formulations to enhance nutrient uptake.

Successful Case Study

Capsicum species from Indonesia were successfully conserved using synthetic seed technology, achieving 90% germination success in field trials.

Somatic Embryogenesis and Genome Editing for Germplasm Enhancement

Somatic embryogenesis is the development of embryolike structures from somatic cells, which can be induced into full plants. This technique is particularly useful for crops with limited seed production.

Integration with CRISPR-Cas9

CRISPR-based genome preservation has been successfully used to improve stress resistance in eggplant varieties, enhancing their survival under drought conditions (Panwar & Joshi, 2024).

Successful Case Study

Wild eggplants (Solanum torvum) were genetically enhanced using CRISPR-modified somatic embryos, making them more resistant to osmotic stress and pathogen attacks.

Recent Advances and Success Stories

1. Conservation of Endangered Onion Species in Europe

A recent study by Tarraf & De Carlo (2024) demonstrated the use of slow-growth in vitro conservation to preserve rare Allium species native to Southern Europe. By modifying growth media and

reducing light intensity, researchers extended the viability of these plants for over three years without subculturing.

2. Cryopreservation of Wild Tomato Varieties

Kim & Popova (2024) reported the successful cryopreservation of wild tomato germplasm using vitrification solutions enriched with dimethyl sulfoxide (DMSO). This method significantly improved post-thaw regeneration rates, ensuring the long-term conservation of wild tomato species for breeding programs.

3. Synthetic Seeds for Indigenous Capsicum Species In Indonesia, researchers developed synthetic seed technology for Capsicum species, allowing for the large-scale propagation and conservation of rare chili pepper varieties (Yalapuspita et al., 2024). These synthetic seeds showed 90% germination success in field trials.

4. Genome Editing for Improved Stress Resistance in Eggplants

CRISPR-Cas9 was successfully used to enhance drought tolerance in wild eggplant species by modifying genes responsible for osmotic stress response (Panwar & Joshi, 2024). This breakthrough has significant implications for climate-resilient vegetable production.

Challenges and Future Perspectives

Despite these advancements, several challenges remain in the widespread application of in vitro conservation techniques:

- High costs associated with maintaining tissue culture facilities.
- Risk of somaclonal variation, which can lead to genetic instability.
- Limited accessibility of cryopreservation facilities in developing countries.

Future research should focus on developing costeffective conservation strategies, such as integrating artificial intelligence (AI) and automation for tissue culture monitoring and machine learning-based optimization of in vitro growth conditions.

Conclusion

In vitro conservation is an indispensable tool for safeguarding the genetic diversity of endangered vegetable crops. The application of advanced biotechnological methods, including cryopreservation, synthetic seed technology, and CRISPR-based genome editing, has significantly improved the efficiency of germplasm conservation. Recent studies demonstrate the successful implementation of these techniques in preserving rare onions, tomatoes, peppers, and eggplants. Continued research and investment in plant biotechnology will be crucial for ensuring the sustainability of these conservation efforts in the face of climate change and habitat loss.

References

- 1. Kim, H. H., & Popova, E. (2024). Improvement and Innovation of Cryopreservation and In Vitro Methods in Plant Resource Protection. Biology.
- 2. Panwar, G. S., & Joshi, B. (2024). In Vitro Propagation and Clonal Fidelity Assessment of Rhynchostylis retusa (L.) Blume: A Threatened Ornamental and Medicinal Orchid. Vegetos.

- 3. Tarraf, W., & De Carlo, A. (2024). In Vitro Biotechnology for Conservation and Sustainable Use of Plant Genetic Resources. Plants, 13(1897).
- 4. Yalapuspita, D. C., Handini, E., & Aprilianti, P. (2024). Improvement of Growth Rate in In Vitro Culture of Paphiopedilum primulinum MW Wood & P. Taylor and Paphiopedilum glaucophyllum JJ Smith using Biotechnology. Tropical Life Sciences.