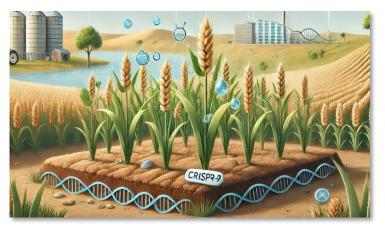


Agri Roots

e- Magazine

CRISPR-Cas9 Applications In Improving Abiotic Stress Resistance And Weed Management In Wheat


ARTICLE ID: 0193

Sushmita^{1*}, Prafulla Kumar², Ankit Agrawal³

¹Department of Agronomy, College of Agriculture, SVPUAT, Meerut ²Department of Biotechnology, University institute of Engineering and Technology, Guru Nanak University ³School of Biotechnology, IFTM University, Moradabad

heat (*Triticum aestivum*) is one of the most important staple crops globally, providing a significant portion of the world's food supply. However, the productivity of wheat is increasingly threatened by various environmental stressors, including abiotic stresses

such as heat, drought, and salinity, as well as biotic stresses like Conventional weeds. breeding methods have made strides in improving wheat varieties. but advancements in

genome-editing technologies like CRISPR-Cas9 offer new possibilities for addressing these challenges. CRISPR-Cas9, a revolutionary tool for gene editing, enables precise modifications to the genome, facilitating the development of wheat varieties that are more resilient to abiotic stresses and more resistant to weed pressure. This article explores the potential applications of CRISPR-Cas9 in improving abiotic stress resistance and weed management in wheat, highlighting its advantages, challenges, and future prospects.

1. CRISPR-Cas9 and Abiotic Stress Resistance in

Wheat

Abiotic stresses, such as heat, drought, salinity, and cold, are major factors limiting wheat yields globally. Climate change is exacerbating these stresses, making it crucial to develop wheat varieties

that can thrive under adverse conditions. CRISPR-Cas9 offers a precise and efficient method for enhancing wheat's tolerance to these environmental stresses by targeting and modifying specific genes involved in stress response pathways.

A. Heat Stress Resistance

Wheat is highly sensitive to heat stress, particularly during its reproductive stages. Heat stress during flowering and grain filling leads to reduced photosynthesis, decreased grain size, and lower yields. Through CRISPR-Cas9, researchers can target genes involved in heat stress response, such as those related to heat shock proteins (HSPs) and antioxidant defense mechanisms. For example, CRISPR-Cas9 has been used to edit genes associated with the expression of HSPs, which are essential for protecting proteins and cellular structures under high temperatures. By enhancing HSP expression, wheat plants can better withstand heat stress, ensuring better grain development and yield.

B. Drought and Salinity Tolerance

Drought and soil salinity are major abiotic stresses that severely affect wheat production. These stresses cause osmotic stress, ion toxicity, and impaired cellular functions. By editing genes involved in osmotic regulation, water uptake, and ion transport, CRISPR-Cas9 can be used to improve wheat's tolerance to drought and salinity. For instance, genes such as *DREB* (dehydration-responsive element-binding) and *P5CS* (pyrroline-5-carboxylate synthetase) are known to play critical roles in the plant's response to drought. By enhancing the expression of these genes, wheat plants can maintain cellular function and improve water-use efficiency under drought and saline conditions.

C. Cold Stress Tolerance

Cold stress, especially during the early growth stages of wheat, can delay germination, reduce tiller formation, and stunt growth. CRISPR-Cas9 can be used to modify genes associated with cold tolerance, such as those that control cold-responsive transcription factors. By editing these genes, researchers can develop wheat varieties that continue to grow and thrive even in colder climates, helping ensure stable wheat production in regions affected by low temperatures.

2. CRISPR-Cas9 in Weed Management in Wheat

Weeds are a significant challenge in wheat production, competing with the crop for water, nutrients, and light. Conventional weed control methods, such as herbicide application and mechanical weeding, are often inefficient, costly, and environmentally harmful. CRISPR-Cas9 offers a promising solution by enabling the development of wheat varieties that are inherently more resistant to weeds or better able to tolerate competition from them.

A. Herbicide Resistance in Wheat

One of the primary challenges in weed management is the overuse of herbicides, leading to the development of herbicide-resistant weeds. CRISPR-Cas9 can be used to enhance wheat's resistance to certain herbicides, thereby reducing the need for chemical applications. By editing genes responsible for herbicide detoxification or modifying pathways that prevent herbicide uptake in wheat, CRISPR-Cas9 could potentially confer tolerance to specific herbicides without affecting the weed control process. This approach would allow farmers to use herbicides more effectively, minimizing the development of resistant weed populations.

B. Competitive Growth Traits

Another innovative application of CRISPR-Cas9 in weed management is the modification of wheat's

growth traits to make it more competitive against weeds. For example, genes that control plant height, root development, and canopy structure could be targeted to promote faster growth or denser canopies, which would outcompete weeds for sunlight, water, and nutrients. By enhancing wheat's competitive ability, CRISPR-Cas9 could help reduce weed pressure without the need for excessive herbicide use.

C. Selective Targeting of Weed Species

CRISPR-Cas9 also holds potential in developing wheat varieties that can selectively target and suppress specific weed species. By editing genes involved in the allelopathic potential of wheat (the ability of a plant to produce chemicals that inhibit the growth of other plants), researchers could enhance wheat's natural ability to suppress weed germination and growth. This would allow for more sustainable weed management practices that minimize the use of chemical herbicides.

3. Advantages of CRISPR-Cas9 in Wheat Improvement

A. Precision and Efficiency

One of the major advantages of CRISPR-Cas9 is its precision in gene editing. Unlike traditional breeding methods, which often require multiple generations and may involve the introduction of undesirable traits, CRISPR-Cas9 allows for targeted modifications of specific genes without affecting other parts of the genome. This makes it a highly efficient tool for improving stress resistance and weed management in wheat.

B. Reduced Time to Develop New Varieties

Traditional breeding can take years or even decades to develop new wheat varieties with improved stress resistance or weed management traits. CRISPR-Cas9 significantly reduces this timeline, allowing for faster development of wheat varieties that can withstand abiotic stresses or better compete with weeds.

C. Non-Transgenic Approach

CRISPR-Cas9-based editing can be carried out without introducing foreign DNA, making it a non-transgenic approach. This is particularly important for regulatory reasons, as many countries have stringent regulations on genetically modified organisms (GMOs). CRISPRedited crops may be accepted more easily by regulators and consumers compared to GMOs.

Conclusion

CRISPR-Cas9 technology offers a transformative approach to improving wheat's resistance to abiotic stresses like heat, drought, and salinity, as well as enhancing weed management. By precisely editing genes associated with stress tolerance and weed competitiveness, CRISPR-Cas9 holds the potential to revolutionize wheat production in the face of climate change and growing weed resistance to herbicides. Although there are challenges, the ongoing advancements in CRISPR technology and regulatory frameworks promise a future where wheat varieties with enhanced resilience and sustainable weed management strategies become a reality.

References

1. Ali, Q., & Wang, Y. (2024). CRISPR-Cas9 in wheat: Enhancing resistance to environmental stress and weed management. *Agronomy for Sustainable Development*, 44(1), 35.

- 2. Gupta, S., & Sharma, R. (2023). Gene editing of wheat for improving resistance to heat and drought stress using CRISPR-Cas9. *Plant Biotechnology Journal*, 21(4), 582-596.
- **3.** Jia, L., & Liu, J. (2023). CRISPR/Cas9-mediated engineering of wheat for stress tolerance. *Journal of Agricultural and Food Chemistry*, 71(22), 7230-7238.
- 4. Zhang, Y., Zhao, Y., & Wang, J. (2022). Application of CRISPR-Cas9 technology in wheat: Achieving improved resistance to abiotic stress. *Frontiers in Plant Science*, 13, 792562.