

A STEP TOWARDS AGRICULTURE

Agri Roots e-Magazine

माटी है वरदान, जल लाये धन धान्य

"THE HEALTH OF OUR
WATERS IS THE
PRINCIPAL MEASURE
OF HOW WE LIVE ON
THE LAND." — LUNA
LEOPOLD

TABLE OF CONTENT

COVER STORY
EDITORIAL AND REVIEWER BOARD
EDITOR'S NOTE
NEW RELEASES

THE TINY WONDERS REVOLUTIONIZING TEXTILES: THE ROLE OF NANOPARTICLES	01
IN FASHION AND INDUSTRY Authors: Kumari Pallavi	
SMART FEEDING TECHNOLOGIES USED IN AQUACULTURE	02

Authors: Surendra Kumar Maurya, Ashish Singh, Ambrish Singh, Mitrasen Maurya, Vikas Gupta

MILLETS:	A	MODEST	GRAIN	WITH	07
SIGNIFICAL	NT H	EALTH			03

Authors: Garima Dixit, Sadhna singh, Tripti Verma

IN VITRO	CONSERVATION	AND	
GERMPLASM	ENHANCEMENT	OF	04
ENDANGERED	VEGETABLES:	A	UT
BIOTECHNOLOG	GICAL APPROACH		

Authors: Md Zeeshan Qaiser, Dr. Amit Kumar Singh

ROBOTIC, DRONE, DIGITAL AGRICULTURE	ОГ
TECHNOLOGY IN AGRI PRODUCTIVITY	05

Authors: Vikram Singh Meena

AI IN HORTICULTURE: TRANSFORMING AGRICULTURE WITH INTELLIGENT TECHNOLOGIES	06
Authors: Dr. Vishal Gangwar, Sushmita, Prafulla Kumar BIOTECHNOLOGICAL INTERVENTIONS FOR ENHANCING HERBICIDE RESISTANCE IN WHEAT	07
Authors: Prafulla Kumar, Sushmita, Ankit Agrawal CRISPR-CAS9 APPLICATIONS IN IMPROVING ABIOTIC STRESS RESISTANCE AND WEED MANAGEMENT IN WHEAT	08
Authors: Sushmita, Prafulla Kumar, Ankit Agrawal MOLECULAR MECHANISMS OF ABIOTIC STRESS TOLERANCE IN WHEAT: INSIGHTS FROM GENETIC ENGINEERING Authors: Ankit Agrawal, Prafulla Kumar, Sushmita	09

THE ARTICLES PUBLISHED IN THIS MAGAZINE ARE BASED ON PERSONAL VIEW/OPINION OF THE AUTHORS. MAGAZINE DOES NOT ENSURE THE GENUINELY OF THE FACTS MENTIONED IN THE ARTICLES. AUTHORS ARE SOLELY RESPONSIBLE FOR PLAGIARISM PRESENT IN THE ARTICLE

MEET the EDITORIAL BOARD

Dr. Deepak Kumar Founder & Editor

Assistant Professor, School of Agriculture, Shobhit Deemed to-be University, Meerut (Uttar Pradesh), India

Dr. Vipin Kumar Editor-in-Chief

Professor, College of Horticulture, Sardar Vallabhbhai Patel University of Agriculture & Technology, Meerut (Uttar Pradesh), India

Dr. B.S. Tomar Editor

Head, Professor And Principal Scientist Division Of Vegetable Science, ICAR - Indian Agricultural Research Institute, New Delhi, India

Dr. Moolchand Singh Editor

Principal Scientist, Division Of Plant Quarantine ICAR-NBPGR (Ministry Of Agriculture & Farmers Welfare, Govt. Of India) IARI Campus (New Delhi), India

Dr. Ravindra Kumar Editor

Senior Scientist, Plant
Pathology, Crop Protection
Division, ICAR- Indian Institute
Of Wheat And Barley Research,
Karnal (Haryana), India

Dr. Dilpreet Talwar Editor

Extension Scientist (Vegetable),
College Of Horticulture And
Forestry, Punjab Agricultural
University, Ludhiana (Punjab)
India

Dr. Pankaj Kumar Kannaujia Editor

Scientist (Senior Scale),
Horticulture, Division Of Plant
Exploration And Germplasm
Collection, ICAR- NBPGR (New
Delhi), India

Dr. Vineet Kumar

Editor

Assistant Professor,
Department Of Soil Science,
Galgotias University, Greater
Noida (Uttar Pradesh), India

MEET the REVIEWER BOARD

Dr. Khushboo Kathayat Reviewer

Assistant Professor,
Department of Horticulture,
College of Agriculture. Lovely
Professional University,
Phagwara (Punjab), India

Dr. Sauhard Dubey Reviewer

Subject Matter Specialist, KVK, Ujhani, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut (Uttar Pradesh), India

Dr. Pratima Gupta Reviewer

Subject Matter Specialist, KVK, Nagina, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut (Uttar Pradesh), India

Dr. Pankaj Kumar Reviewer

Subject Matter Specialist, KVK, Chandausi, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut (Uttar Pradesh), India

Dr. Aman Deep Ranga Reviewer

Ph.D., Dr. YS Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India

Dr. Gaurav Tripathi Reviewer

PDF, Geo-Informatics,
Department of Civil
Engineering, Indian Institute of
Technology, Bombay (India)

Dr. Sudhir Kumar Reviewer

Assistant Professor,
Department of Food
Technology, School of
Advanced Agriculture Sciences
& Technology, CSJMU, Kanpur

Mr. Navdeep Singh Reviewer

Ph.D. Scholar, Horticulture (Vegetable Science), Punjab Agricultural University, Ludhiana (Punjab), India

from the editor

The launch of the "Watershed Yatra" by Union Minister Shri Shivraj Singh Chouhan marks significant step towards a community-driven watershed management and sustainable water conservation. This nationwide mass outreach campaign aims to raise awareness about the critical importance of watershed development in enhancing agricultural productivity, mitigating water climate scarcity, and promoting resilience.

By engaging local communities, policymakers, and stakeholders, the initiative seeks to implement effective water conservation techniques and improve soil health. The campaign is expected to complement ongoing government efforts such as the Pradhan Mantri Krishi Sinchayee Yojana (PMKSY) and other rural water management programs.

The success of "Watershed Yatra" will largely depend on grassroots participation, scientific approaches to watershed management, and policy integration. This initiative has the potential to create a lasting impact on water sustainability, ensuring better livelihoods for farmers and improved ecological balance across the country.

Dr. Deepak Kumar FOUNDER & EDITOR

Agri Roots

e- Magazine

The Tiny Wonders Revolutionizing Textiles: The Role of Nanoparticles in Fashion and Industry

ARTICLE ID: 0186

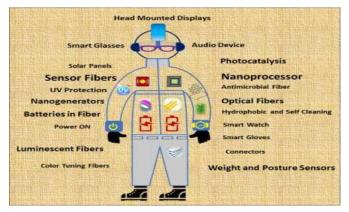
Kumari Pallavi

SMS (Home Science), ICAR-KVK Longleng-798625, Nagaland, ICAR-RC-NEH Region

extiles are only one of several industries that have been impacted by nanotechnology, the science of working with materials at the atomic and molecular level. Adding minuscule particles, measured in nanometers (a billionth of a meter), to textiles is one of its most revolutionary inventions. The way we think about industrial fabrics,

upholstery, and apparel is being completely transformed by these microscopic wonders. Consumer demand for creative uses of emerging technologies and a steady flow of new and increasingly

inventive goods are continual challenges for the modern textile industry. **Products** from the "conventional" textile industry have greatly improved in terms of mechanical strength and durability, fabric's surface texture and "feel," and the capacity to dye and print in variety of colors(Shah al., 2022). Additional advancements include flameretardancy, self-cleaning, antimicrobial, and personal care features including deodorant and antiperspirant qualities. Smart, functional nanoparticles may be seamlessly integrated into a variety of textile materials, including cotton, silk, and polyester (Yetisen et al., 2026).


Benefits of Nanotechnology in Textiles

According to Pereira et al. (2020), a smart textile is one that can detect changes in its surroundings and react by changing one or more of its properties to carry out a task. The use of nanotechnology makes it possible to produce

intelligent, multipurpose fabrics with a wide range of creative uses in the fields of advanced protection, fashion, sports, health, medicines, and transportation (Chen et al., 2018).

1. Eco-Friendliness: Nanotechnology helps save energy and water by minimizing the need for frequent washing, drying, and ironing.

- 2. Cost-effectiveness: Although the initial production costs may be greater, over time, the durability and lower maintenance requirements of fabrics treated with nanoparticles can make up for these expenditures.
- **3. Versatility:** Nanotechnology can be used to improve the practical qualities of a variety of textiles, including silk, wool, polyester, cotton, and more, without sacrificing comfort or style.

The following are some ways that nanoparticles are causing a stir in the textile sector:

1. Water-Repellent Fabrics

Imagine spilling coffee on white shirt and avoiding any stains. Through the formation of a protective nanolayer, nanoparticles like titanium dioxide or silica can give textiles water-repellent surfaces. This is the idea underlying hydrophobic apparel, which lets liquids roll and bead off rather than soak in. This technology is being used more and more by outdoor and sportswear companies to create weatherproof clothing.

2. Self-Cleaning Clothes

Clothes are exposed to sunshine,nanoparticles like zinc oxide and titanium dioxide have self-cleaning qualities enable them to dissolve organic stains and grime. In the near future, a brief sunbath for clothes may take the place of a full wash cycle.

3. Textiles that are antimicrobial and odorresistant

Silver, copper, and zinc nanoparticles are widely known for their antibacterial qualities. These nanoparticles are perfect for sportswear, hospital uniforms, and even regular clothes since they eliminate bacteria and stop odors from building up when they are incorporated into textiles. These developments are especially helping the healthcare sector, which uses antimicrobial fabrics to stop the spread of illnesses.

4. UV-Protection

Sun protection is now a major consideration in contemporary apparel due to the negative effects of UV rays. Fabrics that include nanoparticles like zinc oxide and titanium dioxide have built-in sun protection since they can either block or absorb UV rays. Summer clothing, beachwear, and outdoor gear are all adopting this concept.

5. Increased Sturdiness and Power

Textiles' mechanical qualities are being enhanced by the introduction of nanoparticles such as carbon nanotubes and nan-clay. They can improve a fabric's elasticity, tensile strength, and rip resistance, increasing its durability without sacrificing its flexibility. For industrial uses, including protective gear for construction workers, firefighters, and soldiers, this is very helpful.

6. Smart Textiles

Nanotechnology and wearable technologies have a lot in common. Fabrics are becoming interactive thanks to conductive nanoparticles like metallic nanowires and graphene. Smart fabrics are a rapidly expanding market driven by nano-scale advances, ranging from body temperature and heart rate monitoring to charging devices.

7. Sustainability of the Environment

Eco-friendly methods can also benefit from the use of nanoparticles. Nanoparticles, for instance, can improve dyeing procedures by using less water and chemicals. Similarly, antibacterial and self-cleaning qualities save water and energy by reducing the need for regular washing.

Challenges and Future Outlook

Although using nanoparticles in textiles has many advantages, there are drawbacks as well. Research on the possible effects of nanoparticle emission during production, cleaning, or disposal on the environment and human health is still ongoing. Another challenge is ensuring affordability and scalability for mass production. The use of nanotechnology in textiles appears to have a promising future despite these obstacles. From incorporating energy-harvesting capabilities to giving textiles color-changing qualities, researchers are always coming up with new methods to improve them. Despite the enormous potential of nanoparticles in textiles, issues including scalability, environmental effect, and production costs still exist. Furthermore, more investigation and regulation are required to address worries regarding the toxicity of nanoparticles and their long-term impacts on the environment and human health. The future of textiles,

however, looks promising. Advances in nanotechnology are opening doors to smarter, more sustainable, and high-performance fabrics. As research progresses, we can expect even more groundbreaking applications that will redefine how we wear and use textiles in everyday life.

Conclusion

Textiles are being transformed by nanoparticles into multipurpose materials that meet the needs of both modern industry and consumers. Numerous new professionals have been drawn to the sector by the advancements in fabrication techniques for textiles based on nanomaterials, the prospective market demand, and the ensuing research opportunities. Over the past 20 years or more, a variety of nanomaterialbased structures, including optical components like Bragg diffraction gratings, carbon nanotubes, metallic metal oxide-based nanoparticles, or nanoelectronics, have been incorporated into textiles. These materials were made utilizing a variety of fabrication techniques, including fiber drawing, weaving, lithography, impregnation, and painting. The surfaces of textile fabrics have been altered with nanoparticles to create efficient electrical or optical functionalities, resulting in flexible and wearable clothing. Awareness in this regard must be inculcated in the general public so that only safe, recyclable and climate neutral nanotextiles are produced.

References

1. A.K. Yetisen, H. Qu, A. Manbachi, H. Butt, M.R. Dokmeci, J.P. Hinestroza, *etal*. Nanotechnology Textiles ACS Nano, 10 (3) (2016), pp. 3042-3068

in

- 2. J. Chen, Y. Zhan, Y. Wang, D. Han, B. Tao, Z. Luo, *et al*. Chitosan/silk fibroin modified nanofibrous patches with mesenchymal stem cells prevent heart remodeling post-myocardial infarction in ratsActa Biomater, 80 (2018), pp. 154-168
- 3. Pereira C, Pereira AM, Freire C, Pinto TV, Costa RS, Teixeira JS. Chapter 21 Nanoengineered textiles: from advanced functional nanomaterials to groundbreaking high-performance clothing. In: Handbook of Functionalized Nanomaterials for Industrial Applications, Mustansar Hussain, C., Ed. Elsevier; 2020. p. 611–714.
- 4. Shah, Mudasir Akbar, et al. "Applications of nanotechnology in smart textile industry: A critical review." *Journal of Advanced Research* 38 (2022): 55-75.

Agri Roots

- Magazine

Smart Feeding Technologies used in Aquaculture

ARTICLE ID: 0187

Surendra Kumar Maurya¹, Ashish Singh¹, Ambrish Singh²*, Mitrasen Maurya³, Vikas Gupta⁴

¹ICAR-Central Inland Fisheries Research Institute, Regional Center Prayagraj, Uttar Pradesh, India ²Dept. of Fisheries Resource Management, College of Fisheries Science, DUVASU, Mathura, Uttar Pradesh ³College of Fisheries, ANDUAT, Ayodhya, Uttar Pradesh

lobal aquaculture production has been steadily increasing, now exceeding three times the total live weight, with key species groups such as catfish, seaweeds, carps, bivalves, and

of total production. Additionally, marine species, including fish and crustaceans, have seen significant growth during this period. The variety of species in aquaculture continues to expand, with

around 40% of these species comprising fish, shellfish, and algae, which are cultivated in diverse aquatic environments like marine, brackish, and freshwater across the globe. Traditional aquaculture presents several environmental challenges, limited production capacity, and high labor demands. As a result, smart aquaculture has emerged as a concept aimed at developing the industry in a more sustainable manner, increasing production, and promoting environmentally

friendly practices. Modern aquaculture has evolved into a global industry that spans from extensive farming, where the surrounding environment, influences the majority of production to intensive

farming, where humans carefully manage factors like nutrition and other key elements of the production environment.

Today, aquaculture encompasses over 100 species of animals and plants, raised in various

production systems, ranging from indoor tanks and semi-natural ponds to marine sea-cages, across freshwater, brackish, and seawater environments. Digital tools in fish farming, particularly in the realm of smart fish nutrition, refer to any type of device, sensor system, equipment, or vehicle created to assist humans in monitoring and performing tasks that would traditionally be done manually. Additionally, we include computer systems, mathematical models, and

other theoretical frameworks designed to either replace or assist human analysis of specific situations. As the term suggests, the shared characteristic of the tools, systems, and methods discussed is that they are grounded in highly technical and digitized fields of science, such as computer science, embedded systems, control engineering, and artificial intelligence.

What are smart feeding system?

Feeding plays a crucial role in aquaculture, influencing both the healthy growth of fish and the overall cost and economic returns of the industry. Currently, feeding is typically managed through mechanical systems that regulate timing and quantity, relying on a set amount of feed determined by the breeder. However, this approach does not account for the fish's changing feeding requirements, which can result in underfeeding or overfeeding, potentially hindering fish growth and polluting the water. Machine vision, a highly efficient, cost-effective, non-destructive, and objective technology, offers significant potential for advancing the automation and intelligence of aquaculture. Integrating machine vision with fish feeding needs can enhance efficiency and foster intelligent aquaculture systems. Feed provides essential nutrients and energy for fish survival, playing a vital role in aquaculture. This includes plant-based feeds, animal-derived fresh feeds such as earthworms, commercial compound feeds, and homemade pellet feeds (Hao, 2016). Research indicates that feed costs constitute over 60% of the total aquaculture expenses. As a result, minimizing feed costs can significantly enhance the economic returns of aquaculture. Feed expenses are influenced by both the type and quantity of feed used.

The type of feed is typically determined by the fish species being farmed, while effectively managing the feed quantity has become a key strategy for reducing costs and maximizing profits (Føre et al., 2016).

Technologies that use sensors

Sensors play a crucial role in fish growth monitoring by providing real-time data on various environmental and physiological parameters. Sensors are regarded as devices that detect and process physical data such as temperature, power, light, electricity, and sound. These sensors enable fish farmers, researchers, and aquaculture professionals to track and optimise the growth and health of fish populations.

Ph Sensor: The pH sensor is essential for assessing water quality. The pH scale, ranging from 0 to 14, measures a solution's acidity or alkalinity, based on the concentration of hydrogen ions. A pH level between 0 and 7 indicates acidity, 7 is neutral, and levels above 7 up to 14 indicate alkalinity. The optimal pH range for aquaculture is between 6.5 and 9.5.

Temperature Sensor: This sensor is used to monitor and control the temperature of the water, typically measured in Celsius (°C). A waterproof liquid temperature sensor is often employed for this purpose, with an optimal temperature range for aquatic environments between 6.5 and 9.5°C.

TDS Sensor: The Total Dissolved Solids (TDS) sensor measures the total quantity of dissolved solids in water, including minerals, salts, organic matter, and some gases. It works by passing a current through the water to assess its electrical conductivity, which is inversely related to the TDS level. TDS is usually reported in parts per million (ppm).

EC Sensor: The Electrical Conductivity (EC) sensor is used to measure the electrical conductivity of water, which helps evaluate water quality in aquaculture. It plays a crucial role in assessing the ionic content of water to ensure optimal conditions for aquatic life.

Salinity Sensor: A salinity sensor measures the amount of dissolved salt in water, typically expressed in parts per million (ppm). It uses electrical conductivity properties to determine the salinity, which is essential for maintaining proper conditions in marine and brackish water environments.

Feeding Management: Sensors can monitor feeding patterns and food intake. For instance, underwater cameras and acoustic sensors can track the frequency and amount of food fish are consuming. This information enables adjustments to feeding times and portions to enhance growth.

Fish Health Monitoring: Sensors can help identify early signs of disease or stress in fish. For example, certain sensors can measure cortisol levels in fish, which can signal stress. Early detection enables timely intervention to prevent health problems that may affect growth.

Types of smart feeding

- Smart automation system for fish feeders
- Sensor-based feeders
- Computer vision and AI

What are the Benefits of smart feeding

Smart Aquaculture combines cutting-edge technologies and creative methods to enhance productivity, efficiency, and resource management in the aquaculture industry. From precision farming to automation and AI, it offers the potential to make the

industry more resilient, eco-friendly, and economically sustainable. The main objectives include reducing effluents, lowering input and labor costs, while enhancing human health and environmental benefits. These smart systems can manage various aspects such as breeding, nursery operations, grow-out, water quality, feeding, effluent control, growth and health monitoring, size-based sorting, and counting. By utilizing digital and electronic technologies such as computer vision, machine learning, information and communication technologies (ICT), the Internet of Things (IoT), cloud computing, and automation, Smart Aquaculture holds great promise for sustainable management and increased production. This article reviews the latest advancements and investigates opportunities for smart mariculture. Key elements of aquaculture systems include Artificial Intelligence, Machine Learning, Virtual Reality, and Augmented Reality.

- Improved feed efficiency
- Cost Reduction
- Environment sustainbility
- Enhanced fish health

Major Challenges in implementing smart feeding technologies

Implementing smart feeding technologies in aquaculture presents several challenges. While these systems help optimize conditions by monitoring variables like temperature, oxygen, and feeding, they require significant upfront investment, which can be a barrier for smaller farms. Their integration and maintenance demand specialized expertise, and managing the vast data they generate necessitates

efficient storage and analysis. Environmental factors like water quality and fish behavior impact system performance, requiring continuous calibration. Additionally, technical issues such as hardware failures and software glitches can disrupt feeding schedules. Many traditional farmers may resist adoption due to limited awareness or trust, and scaling these technologies to different farm sizes and species remains a challenge.

Conclusion

In overall conclusion, the rapid expansion of global aquaculture has increased production and species

diversity but also introduced environmental and operational challenges. The adoption of smart aquaculture leveraging digital tools, automation, and artificial intelligence offers a sustainable solution to enhance efficiency, optimize nutrition, and reduce labor demands. Among these advancements, machine vision technology plays a crucial role in improving feeding efficiency, minimizing waste, and lowering costs. As technology continues to evolve, smart aquaculture will drive sustainable growth, ensuring the industry's long-term profitability and environmental responsibility.

References

1. K. Komeyama, M. Kadota, S. Torisawa, K. Suzuki, Y. Tsuda, and T. Takagi, "Measuring the swimming behaviour of a reared pacific bluefin tuna in a submerged aquaculture net cage," Aquat. Living Resour., vol. 24, no. 2, pp. 99–105, 2011.

ISSN: 2583-9071

Agri Roots

- Magazine

Millets: A Modest Grain with Significant Health

ARTICLE ID: 0188

Garima Dixit¹, Sadhna singh², Tripti Verma³

¹Research Scholar, Department of Food and Nutrition, Acharya Narendra Deva University of Agriculture and Technology, Kumarganj, Ayodhya

²Professor, Department of Food and Nutrition, Acharya Narendra Deva University of Agriculture and Technology, Kumarganj, Ayodhya

³Assistant professor³, Department of Food and Nutrition, Acharya Narendra Deva University of Agriculture and Technology, Kumarganj, Ayodhya

illets, which are small-seeded grasses primarily grown in West Africa and East and South Asia, are becoming more and

more acknowledged as a sustainable and nutrient-dense food source. The greatest producer in the world, India, grows a variety of millet varieties, such as finger millet, pearl millet, and sorghum, which are prized for their high

nutritional content. Millets provide a number of health advantages since they are high in complex carbohydrates, protein, dietary fiber, B vitamins, antioxidants, and vital minerals like calcium and iron. These include better immunity, better digestion, weight control, and lower risks of heart disease, diabetes, and some types of cancer. Millets are perfect for anyone with celiac disease or gluten intolerance because they

are gluten-free. Their significance in sustainable agriculture is further supported by their environmental advantages, which include pest resistance and water

efficiency. Additionally, millets provide food security and offer financial advantages for small farms. Millets are a great complement to a balanced diet because they can help with detoxification, prevent

degenerative illnesses, and enhance general health when consumed regularly.

As a wholesome, sustainable food, millet has become more and more well-known globally in recent years. For thousands of years, millets—small-seeded grasses—have been cultivated as cereal and fodder crops, particularly in East and South Asia and West Africa. During the monsoon season in India, millets are

mostly grown as rain-fed Kharif crops. With an annual production of 30.23 million tonnes, India is the world's largest producer of millets. The nation grows millet on 9.67 million hectares, with Rajasthan producing the most, followed by Gujarat(11%), Uttar Pradesh (20%), and Haryana(12%), Madhya Pradesh (9%), Maharashtra (5%), Karnataka (2%), and other states (2%). Millets are prized for their remarkable nutritional qualities and culinary adaptability.

Since millets are higher in nutrients than wheat and rice, they offer many health advantages. Their natural alkalinity makes them easy to digest, especially for kids. Millets are a strong source of protein, which is necessary for muscular growth, and are also rich in fatty acids, dietary fiber, B vitamins, antioxidants, and important minerals including calcium, iron, and magnesium. Millets are perfect for people with celiac disease or gluten sensitivity because they are glutenfree and have a low glycemic index.

Sorghum (jowar), pearl millet (bajra), finger millet (ragi), foxtail millet, proso millet (cheena), kodo millet, barnyard millet (sawa/sanwa/jhangora), small millet (kutki), and brown top millet are among the many varieties of millets that are often found in India. Every type has distinct nutritional advantages and is utilized in a variety of regionally specific culinary cuisines.

Nutrient Values Of Millets: Containing 60–70% dietary carbs, 6–19% protein, 1.5–5% fat, 12–20% dietary fiber, 2-4% minerals, and several phytochemicals, millets are a nutrient-dense food.

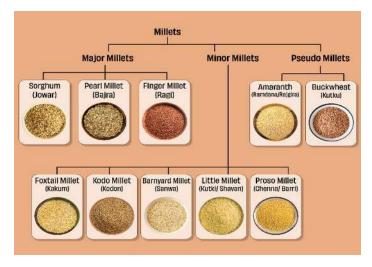
Health benefits of millets:- Strengthens Immune System and Aids in Body Detoxification: Consistent millet consumption strengthens immunity and aids in the body's general detoxification. Millets' antibacterial, anti-tumorigenic, and antioxidant qualities help ward off a number of illnesses, including as cancer and heart problems.

Controls Blood Sugar for Diabetes Management: Magnesium, which is found in millets, lowers the risk of type I and type II diabetes by enhancing insulin sensitivity. Millets are a great source of fiber and non-starchy polysaccharides, which are indigestible carbohydrates that aid un blood sugar regulation. Additionally, because of their low glycemic index (GI), these cereals are unlikely to cause blood sugar levels to rise. For those with diabetes, millets are therefore regarded as the best grain to eat.

Supports Heart Health: Millets improve cardiovascular health by lowering coronary artery obstruction. Because the fibers in millets are soluble, they create a viscous fluid in our stomachs, which may help decrease cholesterol. Consequently, this helps lower cholesterol levels by trapping lipids.

The Detoxifying Antioxidant Properties of Millets: Beneficial substances including quercetin, ellagic acid, and curcumin, which are abundant in millets, aid in the body's detoxification by encouraging the removal of toxins and preventing enzymatic activity. They have more than 50 phenolic compounds, including as flavonoids, phenolic acids, and other antioxidants that have the ability to reduce and chelate metals. Millets are valuable as natural antioxidant sources and functional dietary additives because of their substances.

Nutritional Composition of Millets (per 100g)


Millets	СНО	Protein	Fat(g)	Energy	Dietary	Ca(mg)	Mg(g)	Z(mg)	Fe(mg)	Thaimin	Riboflavin	Niacin	Folic
	(g)	(g)		(kcal)	Fibre					(mg)	(mg)	(mg)	acid
					(g)								(ug)
Sorghum	67.7	10.0	1.7	334.1	10.2	27.6	133.0	2.0	4.0	0.4	0.1	2.1	39.4
Pearl	61.8	11.0	5.4	348.0	11.5	27.4	124.0	2.8	6.4	0.3	0.2	0.9	36.1
Millet													
Finger	66.8	7.2	1.9	320.7	11.2	364.0	146.0	2.5	4.6	0.4	0.2	1.3	34.7
millet													
Kodo	66.2	8.9	2.6	331.7	6.4	15.3	122.0	1.7	2.3	0.3	0.2	1.5	39.5
millet													
Proso	70.4	12.5	1.1	341.1	-	14.0	153.0	1.4	0.8	0.4	0.3	4.5	-
millet													
Foxtail	60.1	12.3	4.3	331.0	-	31.0	81.0	2.4	2.8	0.6	0.1	3.2	15.0
millet													
Little	65.6	10.1	3.9	346.3	7.7	16.1	91.4	1.8	1.3	0.3	0.1	1.3	36.2
Millet													
Barnyard	65.6	6.2	2.2	307.1	-	20.0	82.0	3.0	5.0	0.3	0.1	4.2	-
millet													

Source- National Institute of Nutrition (2017)

Reduce Digestive Disorders and Assist in Digestion:

Millets, being rich in phenolics and fiber, aid improve digestion and lessen digestive problems like cramping, bloating, constipation, and excessive gas. Consuming millets on a regular basis can also improve nutrient retention, enhance kidney and liver health, and reduce issues associated with gluten-rich diets, such as colon cancer and stomach ulcers.

Millets and the Prevention of Cancer: The antimutagenic and anti-carcinogenic qualities of millets are attributed to their phenolic acids, tannins, phytates, and dietary fiber. Consuming millet regularly can reduce the chance of developing cancers like colon, breast, and oesophageal cancer. According to studies, women who eat 30g of dietary fiber per day may have a 50% lower risk of developing breast cancer.

Types of Millets

Major Millets						
Sorghum(Jowar)	High in potassium,					
	High in potassium, phosphorus, calcium, iron, zinc, sodium, thiamine, riboflavin, folic acid, carotene, fiber, and protein.					
	zinc, sodium, thiamine,					
	riboflavin, folic acid,					
	carotene, fiber, and protein.					

Pearl Millet(Bajra)	Comprises 4-6% fats and 12-
	16% protein.
	high (11.5%) in dietary fiber.
	High in calcium, unsaturated
	fats, and niacin.
Finger Millet(Ragi)	Highest calcium content
	(300–350 mg/100g).
	high concentration of
	minerals. includes fat (1.5–
	2%) and protein (6–8%).
	distinct amino acids.
	abundant in antioxidants.
Mi	nor Millets
Barnyard	Richest source of iron and
Millet(Sanwa)	crude fiber.
	includes useful components
	such as beta-glucan and
	GABA.
Proso	Highest protein content
Millet(Chenna)	(12.5%). Manganese from an
	inexpensive source as
	opposed to more traditional
	sources like nuts and spices.
	has a high calcium content.
Foxtail	High in carbs. It has twice as
Millet(Kakum)	much protein as rice.
	supplies iron and copper.
	Grain that is non-allergic and
	extremely digestible.
Kodo Millet(Kodon)	Very high fiber content
	(14.3%), low fat content
	(4.2%), and high protein
	content (11%). abundant in

	calcium, iron, potassium,
	magnesium, zinc, and B
	vitamins. is great for
	bolstering the neurological
	system and has a high
	lecithin content.
Little Millet(Kutki)	High concentration of iron.
	has approximately 38%
	dietary fiber. rich in
	antioxidant properties.
Pse	udocereals
Amaranth	High in lysine and high in
(Ramdana/Rajgira)	protein (13–14%).
	contains a higher percentage
	of oil (6–9%) than the
	majority of other grains.
	Rich in calcium,
	phosphorus, magnesium,
	iron, dietary fiber, and
	potassium.
Buckwheat(Kuttu)	Rich in lysine, it has 13–15%
	protein.
	The vitamins BI, C, and E
	are present. Both
	polyphenols and
	polyunsaturated essential
	fatty acids are abundant.
	More manganese, copper,
	and zinc are present than in
	other cereal grains with
	strong mineral
	bioavailability.
	bioavailability.

Source: FSSAI

Millets are extremely important due to their many applications and excellent nutritional value:

- Nutritional Value: Dietary fibre, vital vitamins, minerals, and antioxidants are all abundant in millets. They provide nutrients to any diet because they are a rich source of complex carbohydrate, protein and healthy fats.
- Regular consumption of millet has a number of health benefits. Due to their low calorie and glycaemic index, millets aid in weight management.
 They also improve digestion, boost immunity, control blood sugar, and support heart health. They also lower the risk of long-term illnesses like diabetes, obesity, and several types of cancer.
- Gluten-Free Substitute: Although millets are naturally gluten-free, they are perfect for people with celiac disease, gluten sensitivity, or those on a gluten-free diet. They are simple to use in place of wheat in pancake, cookie, and bread recipes.
- Culinary Uses: Adaptable to both sweet and Savory recipes, including smoothies, dosas, rotis, oatmeal, and pilaf.
- Environmental Sustainability: Encourages biodiversity and soil conservation, uses less water, and is resistant to pests.
- Economic Importance: Provides food security and revenue to small-scale farmers, particularly on marginal lands.
- Animal feed is nutritious for birds, cattle, and poultry and improves the quality of milk, eggs, and meat.
- Climate Change and Food Security Adaptation:
 Able to withstand severe weather conditions,

helping to provide food security in areas vulnerable to climate change.

Conclusion

Millets are important for human health since they provide a variety of health advantages and vital nutrients. We can control weight, lower the risk of chronic diseases, and promote cardiovascular health by including them in our diet. They are also appropriate for people with celiac disease or gluten intolerance because they are gluten-free. Adopting millets as a mainstay in your diet will greatly improve your general health and wellbeing. Promoting millet as a

mainstream crop can help provide healthy, environmentally friendly food for the future. Millets are a sustainable solution to climate change, offering nutritional security, especially in arid and semi-arid regions. Rich in fiber, vitamins, and minerals, these nutrient-dense grains support digestion, bone health, and overall well-being. They are gluten-free and have a low glycemic index, making them ideal for people with gluten intolerance or managing blood sugar. Additionally, promoting millet as a mainstream crop can help provide healthy, environmentally friendly food for the future.

References:

- 1. Kumar, et. al. (2023). Importance of millets in human health, Agri-Life: Healthy Millets, Mighty Millets, 9(IX), 18-19.
- 2. Kumar, et. al. (2023). Future of millets with reference to climate change in the Indian scenario: A brief overview, Agri-Life: Healthy Millets, Mighty Millets, 9(IX), 22.
- 3. National Institute of Nutrition(2017) https://www.nin.res.in/(2017)
- 4. Keerthana *et.al.*(2023), Unlocking the nutritional power: Exploring the impressive health benefits of millets, Agri-Life: Healthy Millets, Mighty Millets, 9(IX),15
- **5.** Satyavathi, *et.al.*(2023), India's millet initiative: Global food for future an overview, Food system for sustainability and profitability of millets,2(abstract book se liva refrence dena h?)
- 6. Sahu et.al.(2023), Millets as super foods for nutritional and health security, Agri-Life, Healthy millets: Mighty millets, Volume 9 (IX), Page no-3-4
- 7. Millet- The nutri cereal, Guidance note no. 12/2019, https://www.fssai.gov.in/upload/uploadfiles/files/Guidance Notes Version 2 Millets 29 01 2020.pdf

Agri Roots

- Magazine

In Vitro Conservation and Germplasm Enhancement of Endangered Vegetables: A Biotechnological Approach

ARTICLE ID: 0189

Md Zeeshan Qaiser¹, Dr. Amit Kumar Singh²

¹M.Sc. Scholar, Department of Vegetable Science, College of Horticulture and Forestry (CAU, Imphal),
Pasighat, Arunachal Pradesh-791102

²Associate Professor, Department of Basic Science and Humanities, College of Horticulture and Forestry (CAU, Imphal), Pasighat, Arunachal Pradesh-791102

he loss of plant genetic resources, particularly in vegetable crops, poses a

serious threat to global food security and biodiversity. In vitro conservation, a biotechnology-based approach, offers a sustainable solution for preserving endangered vegetable species. This

vitro techniques, including micropropagation, cryopreservation, synthetic seed technology, and somatic embryogenesis, with a special focus on their applications in germplasm enhancement. Additionally, we discuss new technologies such as CRISPR-Cas9, artificial intelligence (AI) for tissue culture optimization, and cryoprotectants with nanomaterials. Recent advancements and successful case studies from

global conservation efforts are analyzed, highlighting the impact of biotechnology in securing vegetable

genetic diversity.

Vegetables contribute significantly to global nutrition, serving as primary of sources vitamins, minerals. antioxidants, and dietary fiber. However. several vegetable species face extinction due to climate

change, habitat destruction, genetic erosion, and overexploitation. Traditional conservation methods, such as seed banks and field gene banks, have limitations, including storage viability issues, disease susceptibility, and high maintenance costs (Tarraf & De Carlo, 2024).

To address these challenges, in vitro conservation has emerged as an efficient and sustainable alternative. In vitro techniques allow plant material to be stored under sterile, controlled environments for prolonged periods while maintaining genetic integrity. Moreover, biotechnological advancements have significantly improved the efficiency and applicability of these methods, making them highly relevant for the conservation of endangered vegetable crops.

This article provides a detailed discussion on in vitro conservation approaches, recent technological advancements, and successful case studies in vegetable germplasm enhancement.

Biotechnological Approaches for In Vitro Conservation of Vegetables

Micropropagation and Tissue Culture

Micropropagation is a widely used in vitro technique that enables the rapid multiplication of plants from small explants such as meristems, shoot tips, or nodal segments. The process involves several key steps:

- **1. Initiation Phase**: Selection and sterilization of explants to establish a contamination-free culture.
- **2. Multiplication Phase**: Induction of multiple shoots from explants using plant growth regulators (PGRs) such as benzylaminopurine (BAP), kinetin (KIN), and gibberellic acid (GA3).
- **3. Rooting Phase**: Development of strong root systems using indole-3-butyric acid (IBA) or naphthaleneacetic acid (NAA).
- **4. Acclimatization**: Gradual adaptation of plants to external conditions before field transplantation.

Advantages of Micropropagation in Conservation

 Allows mass multiplication of rare and endangered vegetable species.

- Produces disease-free planting material.
- Facilitates the conservation of species with recalcitrant seeds (e.g., garlic, onion, and asparagus).

Recent Developments

- Temporary Immersion Bioreactors (TIBs) have improved micropropagation efficiency by enhancing nutrient uptake and reducing contamination risks (Kim & Popova, 2024).
- Automated AI-based monitoring systems are now being integrated into tissue culture labs to optimize growth conditions in real-time.

Successful Case Study

 In vitro propagation of wild Capsicum species using BAP and kinetin-enriched media has led to 90% survival rates in field conditions, ensuring germplasm availability for breeding programs.

Cryopreservation for Long-Term Germplasm Storage

Cryopreservation is an advanced conservation technique where plant materials (shoot tips, embryos, seeds) are stored at -196°C in liquid nitrogen, ensuring long-term viability. The process involves:

- **1. Pre-Treatment**: Application of cryoprotectants such as glycerol, sucrose, DMSO to prevent ice crystal formation.
- **2. Cooling Phase**: Freezing samples using slow-cooling or vitrification methods.
- **3. Storage**: Cryostorage in liquid nitrogen tanks.
- **4. Thawing and Regeneration**: Rewarming and regrowth under controlled conditions.

Advantages of Cryopreservation

- Maintains genetic stability for decades or even centuries.
- Preserves plant material without requiring periodic subculturing.
- Ideal for vegetables with short-lived seeds, such as onions and carrots.

Recent Innovations

- Nanoparticle-based cryoprotectants have significantly improved post-thaw regeneration rates in Brassica oleracea (Kim & Popova, 2024).
- Cryo-encapsulation of shoot meristems has enabled better survival of cryopreserved wild tomato species.

Successful Case Study

A cryopreservation protocol for wild tomato varieties (*Solanum pimpinellifolium*) demonstrated 85% regrowth efficiency, preserving valuable genetic traits for breeding programs.

Synthetic Seed Technology for Germplasm Distribution

Synthetic seeds consist of somatic embryos or shoot tips encapsulated in an artificial coating, typically made of sodium alginate or hydrogel. These seeds can be stored and transported like conventional seeds while remaining viable for extended periods.

Applications in Vegetable Conservation

- Used for difficult-to-propagate species, such as wild carrots and chili peppers.
- Allows the distribution of endangered germplasm across different regions.
- Reduces dependency on traditional seed banking.

Recent Innovations

- Hydrogel-based coatings with slow-release nutrients have improved seed viability and germination rates (Yalapuspita et al., 2024).
- Magnetic nanoparticles are now being integrated into synthetic seed formulations to enhance nutrient uptake.

Successful Case Study

Capsicum species from Indonesia were successfully conserved using synthetic seed technology, achieving 90% germination success in field trials.

Somatic Embryogenesis and Genome Editing for Germplasm Enhancement

Somatic embryogenesis is the development of embryolike structures from somatic cells, which can be induced into full plants. This technique is particularly useful for crops with limited seed production.

Integration with CRISPR-Cas9

CRISPR-based genome preservation has been successfully used to improve stress resistance in eggplant varieties, enhancing their survival under drought conditions (Panwar & Joshi, 2024).

Successful Case Study

Wild eggplants (Solanum torvum) were genetically enhanced using CRISPR-modified somatic embryos, making them more resistant to osmotic stress and pathogen attacks.

Recent Advances and Success Stories

1. Conservation of Endangered Onion Species in Europe

A recent study by Tarraf & De Carlo (2024) demonstrated the use of slow-growth in vitro conservation to preserve rare Allium species native to Southern Europe. By modifying growth media and

reducing light intensity, researchers extended the viability of these plants for over three years without subculturing.

2. Cryopreservation of Wild Tomato Varieties

Kim & Popova (2024) reported the successful cryopreservation of wild tomato germplasm using vitrification solutions enriched with dimethyl sulfoxide (DMSO). This method significantly improved post-thaw regeneration rates, ensuring the long-term conservation of wild tomato species for breeding programs.

3. Synthetic Seeds for Indigenous Capsicum Species In Indonesia, researchers developed synthetic seed technology for Capsicum species, allowing for the large-scale propagation and conservation of rare chili pepper varieties (Yalapuspita et al., 2024). These synthetic seeds showed 90% germination success in field trials.

4. Genome Editing for Improved Stress Resistance in Eggplants

CRISPR-Cas9 was successfully used to enhance drought tolerance in wild eggplant species by modifying genes responsible for osmotic stress response (Panwar & Joshi, 2024). This breakthrough has significant implications for climate-resilient vegetable production.

Challenges and Future Perspectives

Despite these advancements, several challenges remain in the widespread application of in vitro conservation techniques:

- High costs associated with maintaining tissue culture facilities.
- Risk of somaclonal variation, which can lead to genetic instability.
- Limited accessibility of cryopreservation facilities in developing countries.

Future research should focus on developing costeffective conservation strategies, such as integrating artificial intelligence (AI) and automation for tissue culture monitoring and machine learning-based optimization of in vitro growth conditions.

Conclusion

In vitro conservation is an indispensable tool for safeguarding the genetic diversity of endangered vegetable crops. The application of advanced biotechnological methods, including cryopreservation, synthetic seed technology, and CRISPR-based genome editing, has significantly improved the efficiency of germplasm conservation. Recent studies demonstrate the successful implementation of these techniques in preserving rare onions, tomatoes, peppers, and eggplants. Continued research and investment in plant biotechnology will be crucial for ensuring the sustainability of these conservation efforts in the face of climate change and habitat loss.

References

- 1. Kim, H. H., & Popova, E. (2024). Improvement and Innovation of Cryopreservation and In Vitro Methods in Plant Resource Protection. Biology.
- 2. Panwar, G. S., & Joshi, B. (2024). In Vitro Propagation and Clonal Fidelity Assessment of Rhynchostylis retusa (L.) Blume: A Threatened Ornamental and Medicinal Orchid. Vegetos.

- 3. Tarraf, W., & De Carlo, A. (2024). In Vitro Biotechnology for Conservation and Sustainable Use of Plant Genetic Resources. Plants, 13(1897).
- 4. Yalapuspita, D. C., Handini, E., & Aprilianti, P. (2024). Improvement of Growth Rate in In Vitro Culture of Paphiopedilum primulinum MW Wood & P. Taylor and Paphiopedilum glaucophyllum JJ Smith using Biotechnology. Tropical Life Sciences.

Agri Roots

- Magazine

Robotic, Drone, Digital Agriculture Technology In Agri Productivity

ARTICLE ID: 0190

Vikram Singh Meena

CSIR, DST-INSPIRE, UGC-Fellow, Department of Zoology, School of Life Sciences, Babasaheb Bhimrao Ambedkar University (A Central University) Vidya Vihar, Raebareli Road, Lucknow-226025, (UP.)- India.

griculture, a cornerstone of human civilization, faces unprecedented challenges including climate change, population growth, and resource scarcity. Emerging technologies such as robotics, drones, and digital

agriculture offer transformative solutions to enhance productivity, sustainability, and food security. This chapter explores these technologies, their integration into Agri farming, and their alignment with Sustainable Development

Sustainable Development
Goals (SDGs). It delves into their potential to promote social equity and agricultural sustainability while

The agricultural sector is under immense pressure to meet global food demands sustainably. Traditional farming practices often fall short in addressing inefficiencies, environmental concerns, and

offering a roadmap for future developments.

labor shortages. Innovations in robotic systems, drone technology, and digital agriculture are paving the way for a paradigm shift in farming practices. These technologies promise precision, efficiency, and scalability, contributing to sustainable and productive

Agri farming.

Robotic, Drone, and Digital Agriculture Technologies

Robotic Agriculture

Robotic agriculture involves the use of autonomous machines for various farming activities, such as planting, harvesting, and weeding.

These systems utilize sensors, AI, and machine learning to perform tasks with minimal human intervention, reducing labor dependency and operational costs.

Drone Technology

Drones, or unmanned aerial vehicles (UAVs), are increasingly used for precision agriculture. They

provide aerial imaging, monitor crop health, assess soil conditions, and facilitate precision spraying of fertilizers and pesticides. Equipped with advanced sensors, drones offer real-time data for informed decision-making.

Digital Agriculture

Digital agriculture encompasses the use of data-driven technologies, including IoT (Internet of Things), big data analytics, and cloud computing, to optimize agricultural processes. It integrates smart sensors, weather forecasting, and software platforms for efficient resource management and yield optimization.

Impact of Robotic and Drone Technologies on Agri Productivity

Technology	Impact	Examples of Use Productivity Gains		Barriers
		Case		
Robots for Harvesting	Reduces crop wastage	Robotic fruit picking	Faster harvesting, less	Limited crop
	during harvest	systems	damage	compatibility
Drones for Crop	Uniform chemical	Spraying rice fields	Reduced chemical	Battery capacity
Spraying	application	with drones	use, increased	limitations
			coverage	
IoT-enabled Robotic	Autonomous	Robots integrating	Enhanced efficiency	High maintenance
Systems	monitoring and	soil sensors	in field management	costs
	intervention			
AI-powered Drones	Real-time pest and	AI-based imaging	Early intervention,	Dependence on AI
	weed detection	drones	improved yield	algorithms
Autonomous Planting	Precision planting of	Automated row crop	Reduced seed wastage	Requires well-
Robots	seeds	planting		prepared land

Why Implement These Technologies in Agri farming?

- **1. Precision and Efficiency**: Reduces waste and enhances resource utilization.
- **2. Labour Shortage Mitigation**: Addresses challenges arising from rural-urban migration and aging farming populations.
- **3. Environmental Conservation**: Minimizes chemical use and promotes sustainable practices.
- **4. Enhanced Decision-Making**: Provides actionable insights through real-time data analytics.

Importance of Emerging Technologies in Enhancing Agri-Productivity

- 1. Increased Yield: Precision farming practices enabled by robotics and drones optimize planting and harvesting, boosting productivity.
- **2. Cost Efficiency**: Automated systems reduce labor and operational costs.
- **3. Resource** Management: Digital tools ensure optimal use of water, fertilizers, and pesticides.

4. Risk Mitigation: Advanced forecasting and monitoring tools help anticipate and manage risks such as pests and weather anomalies.

Interlink of Technologies and Food Security

The integration of robotics, drones, and digital tools plays a critical role in ensuring food security by:

- Enhancing crop yield and quality.
- Reducing post-harvest losses through efficient supply chain management.
- Enabling adaptive farming practices resilient to climate change.

SDGs and Agri farming

These technologies contribute directly to several SDGs:

• **SDG 2 (Zero Hunger)**: By increasing agricultural productivity and ensuring food availability.

- SDG 12 (Responsible Consumption and Production): Promoting sustainable farming practices.
- **SDG 13** (Climate Action): Mitigating the impacts of climate change through precision agriculture.

Social Equity and Agricultural Sustainability

Adopting these technologies can:

- Empower Marginalized Farmers: Affordable access to advanced tools bridges the technology gap.
- Promote Gender Equality: Automation reduces physical labor, enabling greater participation by women.
- Foster Environmental Stewardship: Sustainable practices ensure long-term soil fertility and ecosystem health.

Challenges and Future Directions for Robotic, Drone, and Digital Agriculture

Aspect	Current Challenges	Future	Impact on	Potential Solutions
		Opportunities	Productivity	
Cost of Technology	High initial	Development of	Increases accessibility	Subsidies for
	investment	affordable solutions	for farmers	adoption
Skill Requirements	Lack of expertise	Training programs	Improved efficiency	Partnerships with tech
	among farmers	and farmer education	with trained users	providers
Regulation and	Restricted use of	Clearer policies for	Enhances adoption of	Government
Policy	drones in some	agricultural tech	drones and robots	initiatives
	regions			
Data Privacy	Concerns about farm	Secure and	Builds trust among	Blockchain for data
	data security	transparent data-	stakeholders	privacy
		sharing platforms		
Environmental	Battery waste, energy	Development of eco-	Reduces carbon	Solar-powered
Impact	use in robotics	friendly technologies	footprint in farming	systems

Way Forward

- **1. Policy Support**: Governments must formulate supportive policies for technology adoption.
- **2.** Capacity Building: Training programs for farmers to effectively use these tools.
- **3. Public-Private Partnerships**: Collaboration to develop affordable and scalable solutions.
- **4. Research and Innovation**: Continued R&D to enhance the efficacy and accessibility of these technologies.

5. Infrastructure Development: Investment in digital connectivity and rural infrastructure.

Conclusion

Robotics, drones, and digital agriculture technologies hold immense potential to revolutionize Agri farming. They offer solutions to challenges such as resource inefficiency, labor shortages, and environmental degradation. By fostering food security, promoting social equity, and aligning with global SDGs, these innovations pave the way for a sustainable agricultural future.

References

- 1. Food and Agriculture Organization (FAO). (2021). "The State of Food and Agriculture."
- 2. International Journal of Agricultural Technology. (2022). "Emerging Technologies in Precision Farming."
- 3. Research articles and white papers on robotics, drones, and digital agriculture technologies.
- 4. United Nations. (2015). "Sustainable Development Goals."
- 5. World Bank. (2020). "Digital Agriculture: Opportunities and Challenges."

Agri Roots

- Magazine

AI in Horticulture: Transforming Agriculture with Intelligent Technologies

ARTICLE ID: 0191

Dr. Vishal Gangwar¹, Sushmita², Prafulla Kumar³

¹Assistant Professor, School of Agricultural Science & Engineering, IFTM University, Moradabad (U.P.)

²Department of Agronomy, College of Agriculture, SVPUAT, Meerut

³Department of Biotechnology, University institute of Engineering and Technology, Guru Nanak University

orticulture, an essential branch of agriculture, focuses on the cultivation of fruits, vegetables, flowers, and ornamental plants. The integration of Artificial Intelligence (AI)

into horticultural practices has revolutionized the industry by improving efficiency, optimizing resource utilization, and enhancing yield and quality. AI-driven technologies such as machine learning (ML), computer vision, robotics, and big data analytics are

playing a significant role in transforming traditional horticultural practices into precision agriculture.

Applications of AI in Horticulture

1. Precision Farming and Crop Monitoring

AI-powered drones and satellite imagery help in realtime monitoring of crops. AI algorithms analyze spectral data to detect plant health issues, water stress, and nutrient deficiencies. Machine learning models assist in predicting disease outbreaks and pest infestations, allowing farmers to take timely preventive actions (Sharma et al., 2022).

2. Automated Disease and Pest Detection

Computer vision and deep learning models are widely used to detect plant diseases and pest infestations at an early stage. AI-based mobile applications allow farmers to capture images of affected crops, which are then analyzed using convolutional neural networks (CNNs) to diagnose

the problem and suggest solutions (Singh & Kumar, 2021).

3. Smart Irrigation Systems

AI-driven irrigation management systems use sensors and weather forecasting to optimize water usage. Machine learning models analyze soil moisture, temperature, and humidity data to determine the precise amount of water needed, reducing water wastage and improving crop health (Zhang et al., 2020).

4. Yield Prediction and Crop Planning

AI models analyze historical data, climate patterns, and soil conditions to predict crop yields accurately. This information helps farmers in making informed decisions regarding planting schedules, fertilizer applications, and market strategies (Patel et al., 2023).

5. Greenhouse Automation

AI-powered greenhouse management systems use Internet of Things (IoT) sensors to control temperature, humidity, and light levels automatically. These systems enhance the growth conditions of plants, ensuring better productivity and quality (Mishra et al., 2021).

6. Post-Harvest Quality Control

AI-based sorting and grading systems utilize computer vision and robotics to assess the quality of fruits and vegetables. These technologies help in standardizing produce quality, reducing post-harvest losses, and increasing market value (Gomez et al., 2020).

Challenges and Future Prospects

Despite the benefits, AI adoption in horticulture faces challenges such as high implementation costs, lack of technical expertise among farmers, and limited access to advanced AI tools in rural areas. Future advancements in AI, coupled with increased accessibility and affordability of smart farming technologies, will drive the widespread adoption of AI in horticulture.

Conclusion

AI is revolutionizing horticulture by enhancing productivity, reducing resource wastage, and improving crop management. With continued research and development, AI-powered solutions will become more efficient and accessible, contributing to sustainable and profitable horticultural practices.

References

- 1. Gomez, F., et al. (2020). "AI-Based Sorting Systems for Post-Harvest Quality Control." *Journal of Agricultural Technologies*, 12(3), 45-58.
- 2. Mishra, R., et al. (2021). "Greenhouse Automation Using AI and IoT." *International Journal of Smart Farming*, 9(2), 112-130.
- **3.** Patel, S., et al. (2023). "Yield Prediction Models in Horticulture: A Machine Learning Approach." *Agricultural Data Science Journal*, 15(1), 75-89.
- 4. Sharma, A., et al. (2022). "AI-Driven Crop Monitoring Systems: A Review." *Precision Agriculture Review*, 14(4), 200-215.
- 5. Singh, V., & Kumar, P. (2021). "Deep Learning for Pest and Disease Detection in Horticulture." *Computational Agriculture*, 10(1), 88-102.
- 6. Zhang, L., et al. (2020). "Smart Irrigation Management Using AI Techniques." *Water Resource Management*, 13(3), 34-49.

Agri Roots

e- Magazine

Biotechnological Interventions for Enhancing Herbicide Resistance in Wheat

ARTICLE ID: 0192

Prafulla Kumar^{1*}, Sushmita², Ankit Agrawal³

¹Department of Biotechnology, University institute of Engineering and Technology, Guru Nanak University

²Department of Agronomy, College of Agriculture, SVPUAT, Meerut

³School of Biotechnology, IFTM University, Moradabad

heat (*Triticum aestivum*) is one of the most important staple crops globally, providing a significant portion of calories and nutrients to the human population. However, weed infestation poses a major threat to wheat production, leading to substantial yield losses.

Traditional methods of weed management, relying on primarily chemical herbicides. have raised concerns about environmental herbicide pollution, resistance, and food safety. In this context,

biotechnological interventions offer promising solutions to enhance herbicide resistance in wheat. By leveraging techniques like genetic engineering, CRISPR-Cas9, and marker-assisted selection (MAS), researchers are developing herbicide-resistant wheat varieties that can withstand selective herbicides without compromising yield or environmental safety.

This article explores the latest biotechnological approaches to herbicide resistance in wheat, their effectiveness, and future prospects.

Biotechnological Approaches for Herbicide Resistance

The application of biotechnology in enhancing

herbicide resistance in wheat involves several advanced techniques, each offering unique advantages. These approaches not only improve weed management efficiency but also aim to minimize

the environmental footprint of wheat production.

1. Genetic Engineering and Transgenic Wheat

Genetic engineering has emerged as a powerful tool for developing herbicide-resistant crops. By incorporating herbicide-tolerant genes into the wheat genome, scientists can create transgenic varieties capable of surviving herbicide applications that kill surrounding weeds. For instance, the introduction of the EPSPS (5-enolpyruvylshikimate-3-phosphate synthase) gene confers resistance to glyphosate, a widely used herbicide. Similarly, the integration of the bar gene, which encodes phosphinothricin acetyltransferase, provides resistance to glufosinate herbicides. These transgenic wheat varieties enable broad-spectrum weed control with reduced herbicide application rates, thereby lowering chemical input costs for farmers.

2. CRISPR-Cas9: A Revolutionary Tool

CRISPR-Cas9 has revolutionized plant biotechnology by offering a precise and efficient method for genome editing. Unlike traditional transgenic methods, CRISPR enables the modification of native genes for herbicide sensitivity responsible introducing foreign DNA, making the resulting wheat varieties more acceptable to regulatory bodies and consumers. For example, researchers have successfully utilized CRISPR to knock out the ALS (Acetolactate Synthase) gene, which is targeted by ALS-inhibiting herbicides. This modification prevents the herbicide from binding to the ALS enzyme, thereby conferring resistance. Such gene edits are inheritable and can be integrated into conventional breeding programs to rapidly disseminate herbicide-resistant traits. The potential of CRISPR extends beyond herbicide resistance, offering possibilities for enhancing abiotic stress tolerance and disease resistance in wheat, thereby contributing to sustainable agriculture.

3. Marker-Assisted Selection (MAS)

Marker-assisted selection (MAS) is a non-GMO approach that accelerates the development of herbicide-resistant wheat varieties by using molecular

markers linked to resistance genes. MAS allows breeders to select plants carrying desirable traits without the need for transgenic modifications. For instance, markers linked to the cytochrome P450 gene family have been used to identify wheat varieties with natural resistance to ACCase-inhibiting herbicides. By combining multiple resistance genes, MAS facilitates the creation of wheat lines with broad-spectrum resistance to various herbicides. This approach not only reduces the risk of resistant weed populations but also complements transgenic methods in integrated weed management strategies.

Challenges and Limitations

The adoption of biotechnological approaches to enhance herbicide resistance in wheat faces several challenges:

- Regulatory Hurdles: Strict regulations and lengthy approval processes for GM crops can delay the commercialization of herbicide-resistant wheat varieties.
- Public Perception: Concerns about the safety and environmental impact of GM crops can limit their acceptance among consumers.
- 3. **Gene Flow Risks**: There is a potential risk of gene flow from herbicide-resistant wheat to wild relatives, leading to the emergence of superweeds.
- 4. **Economic Barriers**: High development costs and intellectual property issues can restrict the adoption of biotechnological interventions, especially among small-scale farmers.

Addressing these challenges requires transparent regulatory policies, public awareness campaigns, and affordable access to biotechnological innovations.

Conclusion

Biotechnological interventions hold significant promise for enhancing herbicide resistance in wheat, providing effective and sustainable alternatives to traditional weed management practices. Techniques such as genetic engineering, CRISPR-Cas9, and MAS have demonstrated their potential to reduce herbicide usage, improve crop productivity, and minimize

environmental impact. However, overcoming challenges related to regulation, public perception, and cost is essential for the widespread adoption of these technologies. A holistic approach that integrates biotechnology with traditional agronomic practices can pave the way for a sustainable future in wheat production.

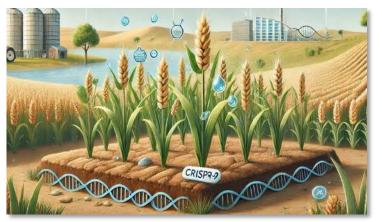
References

- 1. FAO (2021). Weed Management in Wheat: Challenges and Biotechnological Solutions. Food and Agriculture Organization.
- 2. Gupta, R., & Singh, A. (2022). CRISPR-Cas9 Applications in Enhancing Stress Tolerance in Wheat. Plant Biotechnology Reports, 16(2), 145-160.
- 3. Smith, J., et al. (2023). Advances in Genetic Engineering for Herbicide Resistance in Wheat. Journal of Agricultural Biotechnology, 12(3), 214-230.
- 4. Zhao, L., & Chen, M. (2022). Molecular Breeding Techniques for Herbicide Resistance in Cereal Crops. Advances in Crop Science, 18(4), 355-370.

Agri Roots

e- Magazine

CRISPR-Cas9 Applications In Improving Abiotic Stress Resistance And Weed Management In Wheat


ARTICLE ID: 0193

Sushmita^{1*}, Prafulla Kumar², Ankit Agrawal³

¹Department of Agronomy, College of Agriculture, SVPUAT, Meerut ²Department of Biotechnology, University institute of Engineering and Technology, Guru Nanak University ³School of Biotechnology, IFTM University, Moradabad

heat (*Triticum aestivum*) is one of the most important staple crops globally, providing a significant portion of the world's food supply. However, the productivity of wheat is increasingly threatened by various environmental stressors, including abiotic stresses

such as heat, drought, and salinity, as well as biotic stresses like Conventional weeds. breeding methods have made strides in improving wheat varieties. but advancements in

genome-editing technologies like CRISPR-Cas9 offer new possibilities for addressing these challenges. CRISPR-Cas9, a revolutionary tool for gene editing, enables precise modifications to the genome, facilitating the development of wheat varieties that are more resilient to abiotic stresses and more resistant to weed pressure. This article explores the potential applications of CRISPR-Cas9 in improving abiotic stress resistance and weed management in wheat, highlighting its advantages, challenges, and future prospects.

1. CRISPR-Cas9 and Abiotic Stress Resistance in

Wheat

Abiotic stresses, such as heat, drought, salinity, and cold, are major factors limiting wheat yields globally. Climate change is exacerbating these stresses, making it crucial to develop wheat varieties

that can thrive under adverse conditions. CRISPR-Cas9 offers a precise and efficient method for enhancing wheat's tolerance to these environmental stresses by targeting and modifying specific genes involved in stress response pathways.

A. Heat Stress Resistance

Wheat is highly sensitive to heat stress, particularly during its reproductive stages. Heat stress during flowering and grain filling leads to reduced photosynthesis, decreased grain size, and lower yields. Through CRISPR-Cas9, researchers can target genes involved in heat stress response, such as those related to heat shock proteins (HSPs) and antioxidant defense mechanisms. For example, CRISPR-Cas9 has been used to edit genes associated with the expression of HSPs, which are essential for protecting proteins and cellular structures under high temperatures. By enhancing HSP expression, wheat plants can better withstand heat stress, ensuring better grain development and yield.

B. Drought and Salinity Tolerance

Drought and soil salinity are major abiotic stresses that severely affect wheat production. These stresses cause osmotic stress, ion toxicity, and impaired cellular functions. By editing genes involved in osmotic regulation, water uptake, and ion transport, CRISPR-Cas9 can be used to improve wheat's tolerance to drought and salinity. For instance, genes such as *DREB* (dehydration-responsive element-binding) and *P5CS* (pyrroline-5-carboxylate synthetase) are known to play critical roles in the plant's response to drought. By enhancing the expression of these genes, wheat plants can maintain cellular function and improve water-use efficiency under drought and saline conditions.

C. Cold Stress Tolerance

Cold stress, especially during the early growth stages of wheat, can delay germination, reduce tiller formation, and stunt growth. CRISPR-Cas9 can be used to modify genes associated with cold tolerance, such as those that control cold-responsive transcription factors. By editing these genes, researchers can develop wheat varieties that continue to grow and thrive even in colder climates, helping ensure stable wheat production in regions affected by low temperatures.

2. CRISPR-Cas9 in Weed Management in Wheat

Weeds are a significant challenge in wheat production, competing with the crop for water, nutrients, and light. Conventional weed control methods, such as herbicide application and mechanical weeding, are often inefficient, costly, and environmentally harmful. CRISPR-Cas9 offers a promising solution by enabling the development of wheat varieties that are inherently more resistant to weeds or better able to tolerate competition from them.

A. Herbicide Resistance in Wheat

One of the primary challenges in weed management is the overuse of herbicides, leading to the development of herbicide-resistant weeds. CRISPR-Cas9 can be used to enhance wheat's resistance to certain herbicides, thereby reducing the need for chemical applications. By editing genes responsible for herbicide detoxification or modifying pathways that prevent herbicide uptake in wheat, CRISPR-Cas9 could potentially confer tolerance to specific herbicides without affecting the weed control process. This approach would allow farmers to use herbicides more effectively, minimizing the development of resistant weed populations.

B. Competitive Growth Traits

Another innovative application of CRISPR-Cas9 in weed management is the modification of wheat's

growth traits to make it more competitive against weeds. For example, genes that control plant height, root development, and canopy structure could be targeted to promote faster growth or denser canopies, which would outcompete weeds for sunlight, water, and nutrients. By enhancing wheat's competitive ability, CRISPR-Cas9 could help reduce weed pressure without the need for excessive herbicide use.

C. Selective Targeting of Weed Species

CRISPR-Cas9 also holds potential in developing wheat varieties that can selectively target and suppress specific weed species. By editing genes involved in the allelopathic potential of wheat (the ability of a plant to produce chemicals that inhibit the growth of other plants), researchers could enhance wheat's natural ability to suppress weed germination and growth. This would allow for more sustainable weed management practices that minimize the use of chemical herbicides.

3. Advantages of CRISPR-Cas9 in Wheat Improvement

A. Precision and Efficiency

One of the major advantages of CRISPR-Cas9 is its precision in gene editing. Unlike traditional breeding methods, which often require multiple generations and may involve the introduction of undesirable traits, CRISPR-Cas9 allows for targeted modifications of specific genes without affecting other parts of the genome. This makes it a highly efficient tool for improving stress resistance and weed management in wheat.

B. Reduced Time to Develop New Varieties

Traditional breeding can take years or even decades to develop new wheat varieties with improved stress resistance or weed management traits. CRISPR-Cas9 significantly reduces this timeline, allowing for faster development of wheat varieties that can withstand abiotic stresses or better compete with weeds.

C. Non-Transgenic Approach

CRISPR-Cas9-based editing can be carried out without introducing foreign DNA, making it a non-transgenic approach. This is particularly important for regulatory reasons, as many countries have stringent regulations on genetically modified organisms (GMOs). CRISPRedited crops may be accepted more easily by regulators and consumers compared to GMOs.

Conclusion

CRISPR-Cas9 technology offers a transformative approach to improving wheat's resistance to abiotic stresses like heat, drought, and salinity, as well as enhancing weed management. By precisely editing genes associated with stress tolerance and weed competitiveness, CRISPR-Cas9 holds the potential to revolutionize wheat production in the face of climate change and growing weed resistance to herbicides. Although there are challenges, the ongoing advancements in CRISPR technology and regulatory frameworks promise a future where wheat varieties with enhanced resilience and sustainable weed management strategies become a reality.

References

1. Ali, Q., & Wang, Y. (2024). CRISPR-Cas9 in wheat: Enhancing resistance to environmental stress and weed management. *Agronomy for Sustainable Development*, 44(1), 35.

- 2. Gupta, S., & Sharma, R. (2023). Gene editing of wheat for improving resistance to heat and drought stress using CRISPR-Cas9. *Plant Biotechnology Journal*, 21(4), 582-596.
- **3.** Jia, L., & Liu, J. (2023). CRISPR/Cas9-mediated engineering of wheat for stress tolerance. *Journal of Agricultural and Food Chemistry*, 71(22), 7230-7238.
- 4. Zhang, Y., Zhao, Y., & Wang, J. (2022). Application of CRISPR-Cas9 technology in wheat: Achieving improved resistance to abiotic stress. *Frontiers in Plant Science*, 13, 792562.

Agri Roots

e- Magazine

Molecular Mechanisms of Abiotic Stress Tolerance in Wheat: Insights from Genetic Engineering

ARTICLE ID: 0194

Ankit Agrawal¹ Prafulla Kumar², Sushmita³

¹School of Biotechnology, IFTM University, Moradabad

²Department of Biotechnology, University institute of Engineering and Technology, Guru Nanak University

³Department of Agronomy, College of Agriculture, SVPUAT, Meerut

heat (Triticum aestivum L.) is one of the most vital staple crops worldwide, contributing significantly to global food security. However, its productivity is increasingly threatened by abiotic stresses such as drought, salinity,

heat. which and exacerbated bv climate change. These stresses disrupt cellular homeostasis, impair photosynthesis, and reduce yield potential. Traditional breeding methods have made progress, but they are timeconsuming and limited by the existing genetic variability. In this context. genetic

engineering emerges as a powerful tool to enhance wheat's resilience to abiotic stresses by introducing specific genes responsible for stress tolerance. This article delves into the molecular mechanisms underlying abiotic stress tolerance in wheat, exploring recent advancements in genetic engineering techniques such as CRISPR-Cas9, transgenics, and RNA interference (RNAi), aimed at ensuring sustainable wheat production.

1. Molecular Mechanisms of Abiotic Stress

Tolerance in Wheat

A. Osmo protectant Synthesis and Ion Homeostasis

Abiotic stresses cause osmotic imbalance in wheat cells, leading to dehydration and ionic toxicity. Genetic engineering has enabled the introduction of genes responsible for the synthesis of Osmo protectants like proline, glycine betaine, and trehalose.

These compounds help maintain cell

turgor and membrane stability under stress conditions. For instance, overexpression of the P5CS gene, which is involved in proline biosynthesis, has been shown to enhance drought tolerance in wheat.

B. Antioxidant Defense Mechanisms

Abiotic stresses such as heat and salinity induce the accumulation of reactive oxygen species (ROS), which cause oxidative damage to cellular components. Genetic engineering has been utilized to enhance the expression of antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX). For example, transgenic wheat lines expressing higher levels of SOD and CAT have shown improved tolerance to oxidative stress.

Heat shock proteins (HSPs) act as molecular chaperones that prevent protein denaturation under

C. Heat Shock Proteins (HSPs) and Chaperones

heat stress. Genetic engineering has successfully introduced HSP70 and HSP90 genes into wheat, enhancing thermotolerance and ensuring yield stability

2. CRISPR-Cas9: A Revolution in Wheat Genomics

under high temperatures.

The advent of CRISPR-Cas9 technology has transformed landscape of wheat genetic the engineering by enabling precise genome editing. Researchers have successfully employed CRISPR to knock out negative regulators of stress response pathways and enhance stress tolerance. For instance, the knockout of TaERF3 (an ethylene response factor) has been shown to improve salt and drought tolerance in wheat. Additionally, CRISPR has been instrumental in targeting ROS-scavenging pathways to minimize oxidative damage under stress conditions. The simplicity, efficiency, and precision of CRISPR make it a promising tool for developing climate-resilient wheat varieties.

3. Epigenetic Modifications and Stress Memory in Wheat

Recent studies have highlighted the significance of epigenetic modifications such as DNA methylation, histone acetylation, and non-coding RNAs in regulating stress-responsive genes in Epigenetic changes can induce stress memory, allowing wheat to respond more effectively to recurrent stress episodes. For instance, the methylation of promoter regions of drought-responsive genes has been associated with enhanced drought tolerance. Genetic engineering approaches targeting DNA methyltransferases (DNMTs) histone and acetyltransferases (HATs) offer new possibilities for stabilizing stress memory in wheat.

4. Enhancing Photosynthetic Efficiency Under Stress

Abiotic stresses often impair photosynthesis by disrupting chloroplast function and reducing CO2 assimilation. Genetic engineering has been used to upregulate Rubisco activate genes and introduce C4 pathway enzymes into wheat to enhance photosynthetic efficiency under stress conditions. For example, the expression of **PEPC** (phosphoenolpyruvate carboxylase) and **PPDK** (pyruvate phosphate dikinase) has been shown to improve carbon fixation efficiency under heat and drought stress. Improving photosynthesis significantly contribute to yield stability under adverse conditions

5. Role of Phytohormones in Stress Tolerance

Phytohormones such as abscisic acid (ABA), salicylic acid (SA), jasmonic acid (JA), and ethylene play a crucial role in modulating wheat's response to abiotic stresses. Genetic engineering has been utilized to

enhance the biosynthesis and signalling pathways of these hormones to improve stress tolerance. For example, the overexpression of NCED (9-cis-epoxycarotenoid dioxygenase), a key enzyme in ABA biosynthesis, has been shown to enhance drought resistance by regulating stomatal closure and osmotic adjustment. Similarly, the manipulation of ethylene-responsive transcription factors (ERFs) has been reported to improve tolerance to salt and heat stress by modulating stress-responsive genes.

6. The Role of MicroRNAs (miRNAs) in Stress Tolerance

MicroRNAs (miRNAs) are small, non-coding RNAs that regulate post-transcriptional gene expression and play a pivotal role in mediating wheat's response to abiotic stresses. Genetic engineering approaches targeting miRNA-mediated pathways have been explored to enhance stress tolerance. For example, overexpression of miR398 has been shown to regulate Cu/Zn-SOD and improve oxidative stress tolerance. Similarly, targeting miR319 has been associated with improved tolerance to drought and salinity by modulating auxin signalling.

7. Enhancing Water and Nutrient Use Efficiency

Abiotic stresses such as drought and salinity significantly impact water and nutrient uptake in wheat. Genetic engineering has been used to introduce aquaporin genes (PIP2;1 and TIP1;1) to enhance water use efficiency (WUE) under drought stress. Similarly, the introduction of NHX (sodium/hydrogen antiporter) and HKT (high-affinity potassium transporter) genes has shown promise in improving salt tolerance by maintaining ion homeostasis. Enhancing WUE and

nutrient efficiency can help sustain wheat productivity under water-limited and saline conditions.

Challenges and Future Directions

Despite the significant progress, the genetic engineering of wheat faces challenges such as regulatory hurdles, off-target effects, public acceptance, and the need for extensive field trials. The development of cisgenic approaches, which involve the introduction of genes from the same or closely related species, could address some of these concerns. Moreover, the integration of machine learning and bioinformatics for predicting gene targets and optimizing transformation protocols can accelerate the development of stress-resilient wheat varieties. A multi-omics approach combining genomics, transcriptomics, proteomics, and metabolomics is essential to unravel the complex molecular networks involved in abiotic stress tolerance. Public-private partnerships (PPPs) can also play a pivotal role in funding research and accelerating the commercialization of stress-resilient wheat.

Conclusion

Genetic engineering has unlocked new possibilities for enhancing abiotic stress tolerance in wheat by targeting Osmo protection, antioxidant defence, heat shock response, and transcriptional regulation pathways. The use of advanced tools like CRISPR-Cas9, RNAi, and epigenetics has made it possible to develop climateresilient wheat varieties with greater precision and efficiency. However, for these innovations to translate into sustainable agricultural practices, it is essential to address ethical, regulatory, and public acceptance challenges. A synergistic approach combining

biotechnology, traditional breeding, and sustainable agronomy holds the key to securing wheat production in a rapidly changing climate.

References

1. Zhang, Y., et al. (2023). *Epigenetic Modifications in Wheat Under Abiotic Stress*. Plant Molecular Biology Journal.