

A STEP TOWARDS AGRICULTURE

Agri Roots e-Magazine

"ONE NATION, ONE HEALTH - A UNIFIED HEALTH POLICY IS THE FOUNDATION FOR SUSTAINABLE DEVELOPMENT, WHERE THE WELL-BEING OF PEOPLE, ANIMALS, AND THE ENVIRONMENT MOVES FORWARD TOGETHER."

TABLE OF CONTENT

COVER STORY EDITORIAL AND REVIEWER BOARD EDITOR'S NOTE NEW RELEASES

HEALTH POLICY: ONE NATION & ONE	01
HEALTH TO ACHIEVE SUSTAINABLE	01
DEVELOPMENT	
Authors: Dinesh Kumar Meena	
VEDMICOMPOST: THE NATURAL	

VERMICOMPO	ST: THE	NATURAL	Ω
FERTILIZER	THAT'S	REDEFINING	02
SUSTAINABLE	AGRICULTURE		

Authors: Rohit Chaudhary, Savita Rani, Munish Sharma, Deepak Sharma

REVOLUTION	IIZING HORT	ICULTURE:	THE	0.7
ROLE OF	PRECISION	FARMING	IN	03
ENHANCING	CROP	YIELD	AND	
SUSTAINABIL	ITY			

Authors: Himanshu Chawla

TRENDS AND GROWTH R	RATES OF MAJ	OR	O_{I}
RENEWABLE ENERGY	SOURCES:	A	04
DECADAL ANALYSIS			

Authors: V. Nandhini

MORINGA	LEAVES:	A	NUTRIENT-RICH	OF
SUPERFOOL	D			05

Authors: Priya Pandey, R.N. Kewat, Sheetanu Singh, Garima Dixit

TERMINALIA ARJUNA: A TRADITIONAL CARDIAC TONIC WITH MODERN THERAPEUTIC POTENTIAL

Authors: Sheetanu Singh, Priya Pandey, Garima Dixit

ADVANCED MANAGEMENT OF VEGETABLE NURSERY 07

Authors: Shobhit Sharma, Pavitra Dev, Akshya Kumar, Krishan Choudhary

THE ARTICLES PUBLISHED IN THIS MAGAZINE ARE BASED ON PERSONAL VIEW/OPINION OF THE AUTHORS. MAGAZINE DOES NOT ENSURE THE GENUINELY OF THE FACTS MENTIONED IN THE ARTICLES. AUTHORS ARE SOLELY RESPONSIBLE FOR PLAGIARISM PRESENT IN THE ARTICLE

MEET the EDITORIAL BOARD

Dr. Deepak Kumar Founder & Editor

Assistant Professor, School of Agricultural & Environmental Sciences, Shobhit Deemed to-be University, Meerut (Uttar Pradesh), India

Dr. Vipin Kumar Editor-in-Chief

Professor, College of Horticulture, Sardar Vallabhbhai Patel University of Agriculture & Technology, Meerut (Uttar Pradesh), India

Dr. B.S. Tomar Editor

Head, Professor And Principal Scientist Division Of Vegetable Science, ICAR - Indian Agricultural Research Institute, New Delhi, India

Dr. Moolchand Singh Editor

Principal Scientist, Division Of Plant Quarantine ICAR-NBPGR (Ministry Of Agriculture & Farmers Welfare, Govt. Of India) IARI Campus (New Delhi), India

Dr. Ravindra Kumar Editor

Senior Scientist, Plant
Pathology, Crop Protection
Division, ICAR- Indian Institute
Of Wheat And Barley Research,
Karnal (Haryana), India

Dr. Pankaj Kumar Kannaujia Editor

Scientist (Senior Scale),
Horticulture, Division Of Plant
Exploration And Germplasm
Collection, ICAR- NBPGR (New
Delhi), India

Dr. Dilpreet Talwar Editor

Extension Scientist (Vegetable), College Of Horticulture And Forestry, Punjab Agricultural University, Ludhiana (Punjab) India

Dr. Vineet Kumar

Editor

Assistant Professor,
Department Of Soil Science,
Galgotias University, Greater
Noida (Uttar Pradesh), India

MEET the REVIEWER BOARD

Dr. Khushboo Kathayat Reviewer

Assistant Professor,
Department of Horticulture,
College of Agriculture. Lovely
Professional University,
Phagwara (Punjab), India

Reviewer

Subject Matter Specialist, KVK, Ujhani, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut (Uttar Pradesh), India

Dr. Pratima Gupta Reviewer

Subject Matter Specialist, KVK, Nagina, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut (Uttar Pradesh), India

Dr. Pankaj Kumar Reviewer

Subject Matter Specialist, KVK, Chandausi, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut (Uttar Pradesh), India

Dr. Aman Deep Ranga Reviewer

Ph.D., Dr. YS Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India

Dr. Gaurav Tripathi Reviewer

PDF, Geo-Informatics,
Department of Civil
Engineering, Indian Institute of
Technology, Bombay (India)

Dr. Sudhir Kumar Reviewer

Assistant Professor,
Department of Food
Technology, School of
Advanced Agriculture Sciences
& Technology, CSJMU, Kanpur

Mr. Navdeep Singh Reviewer

Ph.D. Scholar, Horticulture (Vegetable Science), Punjab Agricultural University, Ludhiana (Punjab), India

an increasingly interconnected world, health challenges transcend borders, sectors, and species. The concept of "One Nation & One Health" is a transformative policy approach that recognizes the interdependence of human, animal, and environmental health. It underscores the need for an integrated framework that brings stakeholders together across disciplines-medical, veterinary, agricultural, environmental, and social sciences-to collaboratively safeguard public health.

This policy direction aligns seamlessly with the United Nations Sustainable Development Goals (SDGs), particularly those focusing on good health and well-being (SDG 3), clean water and sanitation (SDG 6), climate action (SDG 13), and life on land (SDG 15).

By fostering synergy among national health systems and promoting unified responses to emerging threats—such as zoonotic diseases, antimicrobial resistance, and climate-induced health risks—"One Nation & One Health" offers a resilient pathway toward sustainable development.

As we navigate complex health landscapes shaped by globalization and environmental change, it becomes imperative for nations to adopt holistic and inclusive health policies. The "One Nation & One Health" approach is not merely a slogan—it is a strategic vision for building healthier communities, a safer environment, and a sustainable future for all.

Dr. Deepak Kumar FOUNDER & EDITOR

Agri Roots

engagement.

- Magazine

Health Policy: One Nation & One Health to Achieve Sustainable Development

ARTICLE ID: 0213

Dinesh Kumar Meena*

Department of Horticulture, School of Agriculture Sciences and Technology Babasaheb Bhimrao Ambedkar University (A Central University) Vidya Vihar, Raebareli Road, Lucknow-226025, (UP.)- India.

ENVIRONMENTAL

HEALTH

ONE HEALTH

HEALTH

and

foster

framework represents a comprehensive and integrated approach to health, connecting human, animal, and environmental systems to tackle the complex and interconnected challenges of global sustainable development. This framework not only aligns with the United Nations Sustainable

Development Goals (SDGs) but also actively contributes to their achievement, particularly in advancing health equity, promoting environmental sustainability, and fostering global

partnerships. Global health crises,

such as the COVID-19 pandemic

and the rise of zoonotic diseases, have

he "One Nation, One Health" policy

underscored the pressing need for unified strategies that transcend borders and sectors. Notable global initiatives, including the World Health Organization's establishment of the One Health High-Level Expert Panel (OHHLEP) and international frameworks addressing antimicrobial resistance (AMR), exemplify the growing momentum for integrated health

governance. These efforts highlight the significance of the "One Nation, One Health" approach in advancing critical SDGs, including poverty alleviation (SDG 1), good health and well-being (SDG 3), and climate action (SDG 13). The chapter proposes actionable strategies to strengthen governance, build capacity,

Recommendations include the establishment of cohesive policy frameworks, interdisciplinary building in critical capacity sectors, and empowering local stakeholders to actively HEALTH participate in health governance.

community

By adopting these measures, this chapter envisions a resilient and equitable future, characterized by sustainable health systems capable of addressing emerging global challenges while ensuring inclusivity and long-term progress.

1. Introduction

Health is a cornerstone of sustainable development, fundamentally shaping poverty eradication, economic growth, and environmental sustainability. It encompasses physical, mental, and social well-being, extending beyond the mere absence of disease. Achieving health, however, is not an isolated endeavor—it demands structured, evidence-based strategies to address systemic inequities, optimize resource allocation, and respond to emerging threats. This necessity highlights the critical role of health policy.

Understanding Health Policy

Health policy comprises a structured set of decisions, plans, and actions formulated by governments and stakeholders to achieve specific health-related goals. Unlike health outcomes, which reflect the lived experiences of individuals and populations, health policy focuses on establishing frameworks and systems to enable those outcomes. By defining priorities, allocating resources, and fostering multisectoral collaboration, health policy equips health systems to meet society's evolving needs effectively

2. The Need for Health Policy

Health policies are essential for addressing complex health challenges and ensuring equitable access to care. Key reasons include:

- 1. Coordination and Integration: Health policies facilitate the integration of human, animal, and environmental health systems. For example, the "One Nation, One Health" framework addresses interconnected challenges such as zoonotic diseases, antimicrobial resistance (AMR), and climate change by promoting a cohesive approach.
- 2. **Equity and Accessibility**: Effective policies reduce disparities in healthcare access, ensuring that

- marginalized communities receive the care they need.
- 3. Adaptation to Global Threats: From pandemics to environmental degradation, health policies enable nations to adopt proactive, resilient strategies to mitigate risks and respond effectively.
- 4. Alignment with Global Goals: Health policies align national priorities with international frameworks like the United Nations Sustainable Development Goals (SDGs), advancing shared objectives such as good health and well-being (SDG 3) and climate action (SDG 13).

3. Defining One Health and One Nation

The One Health concept recognizes the interconnectedness of human. animal, and environmental health, emphasizing that the well-being of each is inseparably linked. Its foundation lies in addressing zoonotic diseases—diseases transmissible between animals and humans—and mitigating their public health impacts. Over time, the scope of One Health has expanded to encompass environmental health, reflecting the intricate interactions between ecosystems and public health.

The One Nation, One Health framework builds on the One Health principles, advocating for a cohesive, national-level policy approach that integrates human, animal, and environmental health systems. It emphasizes multisectoral collaboration and coordinated governance to tackle complex, interlinked health challenges.

4. The "One Nation, One Health" Framework: An Integrated Approach

The "One Nation, One Health" framework exemplifies a unified policy strategy rooted in the One Health paradigm, which recognizes the interconnectedness of ecosystems. By fostering multisectoral collaboration, this framework integrates efforts across public health, veterinary science, environmental conservation, and governance. It addresses critical challenges, including:

- Zoonotic Disease Prevention: Reducing the risk of diseases that spread between animals and humans.
- Combating AMR: Developing strategies to mitigate the rise of antimicrobial resistance.
- Climate Resilience: Addressing health impacts arising from environmental changes.

This integrated approach ensures that health policies are not only inclusive but also adaptive to emerging global health threats, thereby contributing to a sustainable and equitable future. By aligning health systems with the SDGs and promoting multisectoral collaboration, the "One Nation, One Health" framework blueprint for achieving sets а comprehensive health outcomes across diverse populations and ecosystems.

5. Historical Evolution of One Health

The origins of One Health can be traced back to historical efforts linking human and animal health. Early milestones included the recognition of zoonotic disease transmission and the integration of veterinary and medical sciences. Over the years, as the global understanding of health systems deepened, environmental health became a critical component of One Health.

Internationally, the adoption of the One Health framework accelerated with the establishment of the

Tripartite Collaboration by the World Health Organization (WHO), the Food and Agriculture Organization (FAO), and the World Organization for Animal Health (WOAH). This initiative represents a landmark in coordinated global action, addressing health risks through collective responsibility and shared strategies.

Table 1: Evolution of the One Health Approach

Phase
Early
2000s
2010s
2020-2023
(COVID-
19)
2024-
Present
2000s 2010s 2010s 2020-2023 COVID- 19) 2024-

6. One Health and Sustainable Development Goals (SDGs)

The principles of One Health align closely with the United Nations Sustainable Development Goals (SDGs), serving as a strategic framework for achieving several key targets:

• Good Health and Well-Being (SDG 3): By addressing zoonotic diseases, antimicrobial resistance (AMR), and emerging health threats, One Health ensures comprehensive health outcomes.

- Climate Action (SDG 13): The integration of environmental health highlights the importance of mitigating climate change impacts on ecosystems and health.
- Zero Hunger (SDG 2): Improved livestock and agricultural health contribute to food security and nutrition.
- Life on Land and Below Water (SDGs 14 and 15): Ecosystem health is essential for biodiversity conservation and sustainable resource use.

7. The Evolution of Health Policy in India

India's health policy landscape has been shaped by persistent challenges such as infectious diseases, malnutrition, and environmental degradation. Policies like the National Health Policy (2017) and programs such as Ayushman Bharat reflect the nation's commitment to achieving universal health coverage and addressing health inequities. These initiatives have laid the groundwork for integrating One Health principles into national strategies.

By adopting the "One Nation, One Health" approach, India can:

- Enhance Disease Prevention: Develop coordinated strategies to combat zoonotic diseases and AMR.
- 2. Strengthen Multisectoral Collaboration: Foster partnerships between health, agriculture, and environmental sectors.
- Accelerate Progress Toward SDGs: Align national health priorities with global sustainability objectives.
- 4. **Environmental Degradation**: Deforestation, pollution, and climate change exacerbate health

- risks, including vector-borne diseases and water scarcity.
- 5. Food Safety and Security: Strengthening food systems through sustainable agricultural practices and improved veterinary services is vital for ensuring nutritional security.
- 6. **Urbanization and Population Growth**: Rapid urbanization and population pressures strain health systems, necessitating innovative and integrated solutions.

Importance of One Health for Sustainable Development

The One Health framework is critical for addressing 21st-century challenges such as pandemics, climate change, and biodiversity loss. Its integration into national and global health policies can ensure resilient health systems, equitable access to care, and sustainable resource use. By adopting the "One Nation, One Health" vision, nations can build robust, inclusive, and adaptive health systems that not only respond to current health challenges but also contribute significantly to achieving the SDGs and fostering long-term sustainability

The One Nation, One Health framework represents a transformative vision for integrating human, animal, and environmental health systems. Rooted in the One Health approach, it emphasizes the interconnectedness of ecosystems and the importance of multisectoral collaboration. By addressing the root causes of health challenges, this framework not only promotes resilience and sustainability but also advances health equity and social justice by prioritizing inclusive and culturally relevant solutions.

Table 2: Key Innovations in Health Policy

Innovation	Description	Impact
Vaccination	Development of	Eradication of
Programs	vaccines for	smallpox,
	disease	reduced polio
	prevention	cases
Telemedicine	Use of	Improved
	technology for	access in rural
	remote	and
	healthcare	underserved
	delivery	areas
Electronic	Digital storage	Enhanced
Health	of patient data	coordination
Records	for efficient	and reduced
	management	errors
One Health	Integration of	Proactive
Framework	human, animal,	disease
	and	control, focus
	environmental	on AMR
	health	
Health Equity	Addressing	Better health
Policies	disparities in	outcomes in
	access to care	marginalized
		groups

8. Case Studies and Best Practices

Several initiatives highlight the practical application and impact of the One Health framework in advancing equity and justice:

1. India's National Action Plan on AMR (2017-2021) A One Health approach was adopted to combat antimicrobial resistance (AMR) through improved surveillance, rational antibiotic use, and community awareness programs. This initiative

- underscores the importance of equitable access to safe and effective medications.
- 2. Rabies Elimination Program Collaborative efforts involving health, veterinary, and local governance sectors aim to eliminate human rabies deaths by 2030. The program emphasizes the importance of equity in vaccine distribution and access to preventive care.
- 3. Eco-Health in the Western Ghats Community-driven conservation programs in biodiversity hotspots illustrate the links between environmental health and human well-being, empowering local populations to participate in sustainable development.
- 4. Global Health Security Agenda (GHSA) India's active participation in the GHSA demonstrates its commitment to strengthening health systems and preparedness, ensuring marginalized communities are protected from emerging health threats.

Challenges to Implementation

Despite its potential, the "One Nation, One Health" approach faces critical barriers that hinder its equitable implementation:

- 1. **Fragmented Governance** The lack of coordination among ministries and sectors creates silos, limiting the integration of health systems.
- Resource Constraints Financial and infrastructural limitations reduce the scalability of One Health initiatives, disproportionately affecting underserved regions.
- Data and Surveillance Gaps Weak surveillance systems and limited data sharing impede evidencebased policy decisions.

- 4. Awareness and Education Policymakers, professionals, and communities often lack understanding of One Health principles, delaying widespread adoption.
- 5. Cultural and Socio-economic Barriers

 Addressing inequities and traditional practices
 requires culturally sensitive and socially just
 approaches.

9. Policy Recommendations

To overcome these challenges, the following strategies are essential:

- Integrated Governance Framework Establish a national One Health commission to ensure coordinated efforts across sectors, levels of government, and stakeholders.
- 2. Strengthening Surveillance Systems Develop integrated disease surveillance networks encompassing human, animal, and environmental health, ensuring timely and equitable responses to health threats.
- 3. Capacity Building Invest in cross-disciplinary training for health professionals, veterinarians, and environmental scientists to enhance collaboration.
- Research and Innovation Support interdisciplinary research to tackle complex health challenges and develop inclusive, context-specific solutions.
- Community Engagement Actively involve local communities in planning and implementing One Health initiatives to ensure cultural relevance and long-term sustainability.

6. **International Collaboration** Foster global partnerships to share knowledge, resources, and best practices for enhanced resilience and equity.

Conclusion

The One Nation, One Health policy framework is pivotal for addressing health disparities and advancing social justice. By integrating human, animal, and environmental health systems, it provides a pathway to tackle systemic inequities and build resilient health systems. For India, adopting this approach is not only an opportunity but a necessity to meet its Sustainable Development Goals (SDG) commitments, particularly those related to health and well-being (SDG 3), reduced inequalities (SDG 10), and climate action (SDG 13).

The One Nation, One Health policy framework is not merely a vision but a necessity for building resilient health systems that promote equity, justice, and sustainability. By addressing root causes, fostering collaboration, and ensuring inclusive access to resources, this approach lays the foundation for a healthier and more just future.

For India, this framework represents a unique opportunity to lead by example in achieving the SDGs and advancing global health priorities. Strong political will, multisectoral collaboration, and active community participation are vital for translating this vision into reality. By addressing root causes and promoting equitable access to health resources, the One Nation, One Health framework can ensure a healthier, more just, and sustainable future for present and future generations.

References

- 1. Food and Agriculture Organization (FAO), World Organization for Animal Health (WOAH), & World Health Organization (WHO). (2010). The FAO-OIE-WHO Collaboration: Sharing responsibilities and coordinating global activities to address health risks at the animal-human-ecosystems interface.
- 2. Gibbs, E. P. J. (2014). The evolution of One Health: a decade of progress and challenges for the future. *Veterinary Record*, 174(4), 85-91.
- 3. Ministry of Health and Family Welfare, Government of India. (2017). National Health Policy.
- 4. Mukherjee, N., & Goswami, P. (2020). Climate change and health in India: Challenges and opportunities. *Environmental Research*, *186*, 109590.
- 5. National Action Plan on Antimicrobial Resistance (NAP-AMR) (2017-2021). Ministry of Health and Family Welfare, Government of India.
- 6. Ramesh, R., & Kapoor, V. (2021). Antimicrobial resistance: Addressing the silent pandemic. *Indian Journal of Medical Research*, 154(3), 245-249.
- 7. World Health Organization. (2022). One Health Joint Plan of Action 2022-2026: Working together for the health of humans, animals, plants, and the environment.

Agri Roots

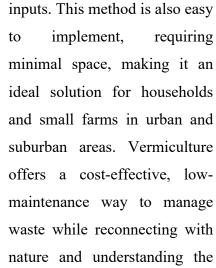
e- Magazine

Vermicompost: The Natural Fertilizer That's Redefining Sustainable Agriculture

ARTICLE ID: 0214

Rohit Chaudhary*, Savita Rani, Munish Sharma, Deepak Sharma

School of Agricultural Sciences, Baddi University of Emerging Sciences and Technology (H.P.) 173205, India


n today's world, where environmental responsibility is crucial, vermicompost has become a symbol of sustainable farming. This natural fertilizer, created by earthworms, showcases nature's remarkable ability to transform discarded materials into a valuable asset. The process known as

vermicomposting.

Vermicomposting is an ecofriendly process that transforms organic waste into nutrient-rich compost using earthworms, particularly *Eisenia fetida* (red worms). These worms break down food scraps, plant debris, and other organic matter into compost, also known as worm

castings, which is packed with essential nutrients like nitrogen, phosphorus, and potassium. Vermicompost offers numerous advantages for both soil and plants. It improves soil structure by enhancing aeration and water retention, creating optimal conditions for plant growth. The nutrients within vermicast are readily accessible to plants, encouraging robust development and higher yields. Furthermore, vermicompost boosts

soil fertility by introducing helpful microbes that facilitate nutrient cycling and suppress diseases. Its ability to reduce soil-borne diseases and pests makes it a safe and natural alternative to synthetic fertilizers. For gardeners and farmers, vermicompost serves as a natural fertilizer, reducing the need for chemical

benefits of organic recycling (J Domínguez. 2023). The benefits of using vermicompost extend beyond individual gardens and farms, impacting waste management and environmental sustainability. By diverting organic waste from landfills, vermicomposting lightens the load on waste disposal systems and decreases greenhouse gas emissions. It also contributes to a circular economy of nutrients,

returning valuable resources soil. the to Vermicomposting is a straight forward yet powerful technique adaptable to various scales, from small household setups to large commercial operations. It presents a cost-effective and eco-friendly method for managing waste and producing premium organic fertilizer. As we strive for a more sustainable future, significant vermicompost offers potential revolutionize agriculture and promote ecological harmony (Younis et al., 2023).

The Transformative Benefits Of Vermicompost

Vermicomposting offers a multitude of advantages, impacting soil health, plant vitality, waste management, and even climate resilience:

Enhancing Soil and Plant Health

- Improved Soil Structure: Vermicompost significantly enhances soil structure, improving aeration and water retention. This creates optimal conditions for robust root development and overall plant growth.
- Superior Nutrient Availability: The nutrients within vermicast are in a readily accessible form for

- plants, promoting vigorous growth and higher agricultural yields.
- Boosted Soil Fertility: It enriches soil fertility by introducing a diverse community of helpful microbes that facilitate nutrient cycling and actively suppress plant diseases.
- Natural Disease Suppression: Its ability to reduce soil-borne diseases and pests makes it a safe and natural alternative to chemical inputs, promoting healthier ecosystems.
- Accelerated Seedling Growth: Vermicompost provides essential nutrients and microorganisms that significantly promote vigorous seedling growth.

Sustainable Waste Management and Environmental Impact:

- Waste Diversion From Landfills: A major advantage of vermicomposting is its remarkable ability to divert vast amounts of organic waste from landfills. Unlike landfill decomposition, which produces harmful greenhouse gases like methane in anaerobic conditions, vermiculture occurs in an aerobic environment, significantly minimizing these emissions.
- Reduced Greenhouse Gas Emissions: By
 preventing organic waste from decaying
 anaerobically in landfills, vermicomposting directly
 contributes to reducing potent greenhouse gas
 emissions, playing a crucial role in climate change
 mitigation.
- Circular Economy Integration:

 Vermicomposting perfectly embodies the principles

 of a circular economy. It transforms what would

otherwise be considered waste into a valuable resource, closing nutrient loops and reducing our reliance on finite virgin resources.

 Carbon Sequestration: By returning stable organic matter to the soil, vermicompost helps sequester carbon, further aiding in climate change mitigation efforts.

Climate Change Adaptation And Resilience

Vermicompost-enriched soils are more resilient to extreme weather events. Their improved water-holding capacity helps plants withstand droughts, while better drainage reduces runoff during heavy rainfall, making agricultural systems more robust against unpredictable climate patterns.

Methods: The Simplicity of Vermicomposting

Vermicomposting involves several key steps:

- Collection of organic waste
- Creation of a worm bed
- Introductin of worms
- Monitoring and maintenance
- Harvesting of vermicompost

According to recent research, vermicomposting is a sustainable approach for managing organic waste in developing countries, providing a cost-effective and environmentally friendly solution.

Procedure For Making A Pit For Vermicomposting

Step 1: Selecting a location

Choose a location that is well-ventilated, accessible, and receives partial shade.

Step 2: Digging the pit

Dig a pit approximately 3-4 feet deep and 4-6 feet wide.

Step 3: Lining the pit

Line the pit with a 1-2 inch layer of brick or stone to prevent the worms from escaping.

Step 4: Adding bedding material

Add a 4-6 inch layer of bedding material, such as coconut coir or shredded newspaper, Straw, Saw dust to the pit.

Step 5: Introducing worms

Introduce red wiggler worms into the pit.

Step 6: Adding organic waste

Begin adding a variety of organic waste to the pit. Suitable materials include food waste (fruit and vegetable scraps), leaves, grass clippings, yard waste, non-glossy paper, untreated wood, some fabrics, sewage sludge, manure, food-soiled paper, and pruning waste. Avoid meat, dairy, and oily foods, as they can attract pests.

Step 7: Monitoring and maintenance

Regularly monitor the pit to ensure optimal conditions for worm growth and composting. This includes maintaining appropriate moisture levels (damp like a wrung-out sponge) and ensuring adequate aeration.

Diverse Applications of Vermicompost

Vermicompost has a wide range of applications;

- 1. Soil Fertility Improvement: Vermicompost can improve soil fertility by adding essenntial nutrients, microorganisms, and humus.
- **2. Organic Farming:** Vermicompost can be used as a natural fertilizer in organic farming to promote plant growth and improve soil health.
- **3.** Crop Yield Enhancement: Vermicompost can increase crop yields by providing plants with essential nutrients and promoting healthy root growth.
- **4. Soil Erosion Prevention:** Vermicompost can help prevent soil erosion by improving soil structure and increasing its water holding capacity.
- **5. Plant Disease Suppression:** It can suppress plant diseases by promoting beneficial microorganisms and improving soil health.
- **6. Seedling Growth Promotion:** Vermicompost can also promote seedling growth by essential nutrients and microorganisms.
- 7. Soil Remediation: Vermicompost can remediate contaminated soils by breaking down pollutants and improving soil health.
- **8. Waste Management:** It can manage organic waste by breaking it down into a nutrient-rich compost with the help of earthworms.

- 9. Climate Change Mitigation: Vermicompost can help mitigate climate change by sequestering carbon in soils and reducing greenhouse gas emissions.
- **10. Biogas Production:** It can be used to produce biogas, a renewable energy source.

Conclusion

By embracing vermicomposting, we can unlock a multitude of benefits, from mitigating climate change and reducing waste, to promoting soil health and supporting sustainable agriculture. Ultimately, this simple yet powerful practice has the potential to contribute to a healthier planet, improved food security, and a more sustainable world for generations Vermicomposting with earthworms come. transforms organic waste into a nutrient-rich fertilizer, reducing greenhouse gas emissions and promoting healthy soil ecosystems. As we move forward, adopting vermicomposting as a sustainable solution can create jobs and income opportunities for rural communities, while also making a positive impact on the environment, one worm at a time.

References

- 1. J Domínguez., (2023). Vermicomposting for sustainable food systems in Africa. Sustainability Sciences in Asia and Africa, Singapore: Springer, 27–44.
- 2. Koushal S., Arya D., Kadam G. L., Parmar A., Chauhan N., Haloi D and Rahman T. (2025). Vermicomposting and Its Role in Soil Health: A Comprehensive Review. *Journal of Scientific Research and Reports*, 31(1), 461-471. https://doi.org/10.9734/jsrr/2025/v31i12789.

- **3.** Mohite D. D., Chavan S. S., Jadhav, V S., Kanase T., Kadam M. A. and Singh A. S. (2024). Vermicomposting: a holistic approach for sustainable crop production, nutrient-rich bio fertilizer, and environmental restoration. Discover Sustainability, 5(1), 60.
- **4.** Younis A H., Rajesh K and Ajay K. (2023). Environmental waste management strategies and vermi transformation for sustainable development. Environmental Challenges, https://doi.org/10.1016/j.envc.2023.100747.

Agri Roots

e- Magazine

Revolutionizing Horticulture: The Role of Precision Farming in Enhancing Crop Yield and Sustainability

ARTICLE ID: 0215

Himanshu Chawla

Ph.D. Scholar, Department of Fruit Science, College of Horticulture and Forestry, Jhalawar, Agriculture
University Kota, Rajasthan – 326023

orticulture has emerged as the most promising and favoured candidate for promoting diversification and combating climate change. In recent years, the growing demand

for horticultural produce for internal consumption and exports has highlighted the need for increasing production and enhancing the productivity of these crops. Efforts made to harness available technologies through plan schemes have yielded good results and India

has secured a creditable position in the international scene in the production of many horticultural products such as mango, banana and cashew. Precision farming is one such area that can facilitate the most efficient utilization of resources and improve returns per unit area and time. Precision farming has been the buzzword of horticultural research around the globe in recent times. It is based on the philosophy of heterogeneity within homogeneity and requires precise

information on the degree of variability within field management (Patterson and Nair, 2011). The aim is to vary the horticultural inputs in response to the varying conditions within the field. The various attempts that

have been made to operationalize precision farming involve the use of intelligent devices like the yield mapper (comprising of a harvester, yield measuring sensor and a GPS), variable rate fertilizer rigs and satellite imagery to

supplement the information on the crop variability at a good spatial resolution as well as temporal resolution. Geographic Information System (GIS) incorporates the information from all these devices, which culminates in precision farming. This chapter aims to understand the importance of precision farming in fruit crops.

Today technical innovation has reached a stage where a farmer can have access to information and tools to manage his automated field activities. They may now monitor, analyse and deal with variability within the field (e.g. fertility of the soil, water availability and yields) that was known to exist previously but was not managed, to their advantage. The ability to handle the fluctuation in production in the field and maximize financial return, decrease waste and limit impact on the environment has always been an ambition of an innovative farmer in the horticultural sector, especially those that support solid horticultural techniques. Precision farming offers to prescribe strategic farm management choices in the field operations to aid in fulfilling this aim through mechanization, sensing and communication technologies, automated data collection, recording and usage of this information. Such an approach in horticultural production management gives rise to what is currently known as precision horticulture, soilspecific crop management (SSCM), spatially variable crop production (SVCP), smart farming (SF), etc (Sharma and Nadarajan, 2017).

Precision farming in horticulture comprises the application of technologies to regulate spatial and temporal variability associated with all the aspects of horticultural production for enhancing crop performance and environment quality by employing satellite, sensors and field or thematic mapping. Precision farming advocates for efficient management of resources through location-specific interventions. It comprises several interventions like micro irrigation, fertigation, mulching for in-situ moisture conservation, soil and leaf nutrient-based fertilization management, protected cultivation and organic farming, etc.

Precision farming as precision agriculture which is not just the injection of new technologies but it is rather an information revolution, a more precise farm management system made possible by new technologies that result in a higher level. It means adding the right amount of input at the right time and the right location within a field (Schofield, 2019)

Objectives of Precision Farming

Increased production efficiency with higher product quality via more efficient chemical usage, energy conservation and protection of soil and water.

Higher Profitability And Sustainability: Maximum profit can be reached in each zone or site of a field by optimizing the precise application of inputs such as variety, seed, fertilizer, herbicide, insecticide and so on as crop demand dictates, which can be done in each zone or site of a field, weather, soil qualities (nutrient availability, texture, and drainage, for example), and historical crop success all play a role.

Optimizing Production Efficiency: Identifying variations in yield potential may provide opportunities to maximize production amount at each site or within each zone utilizing differential techniques under a particular set of field conditions.

Increasing Input Efficiency: Making efficient use of inputs such as fertilizers, seeds and so on based on the production potential of the soil at a specific site.

Effective And Efficient Pest Management: One of the primary goals of precision farming is to reduce crop input costs, which can lead to higher returns and improved environmental services. In comparison to standard farming practices, site-specific variable rate application advocates the use of chemicals, such as herbicides and insecticides, at the site of the problem with a targeted approach.

Optimizing Product Quality: Product quality can be optimized by utilizing sensors to identify quality aspects of a crop, which assists in making decisions on input applications based on the aim.

Conservation of Soil, Water and Energy: Precision farming takes a complete strategy that begins with crop planning and measuring field variability, which includes tillage procedures that disturb the soil to the bare minimum. Furthermore, water is applied efficiently by using techniques such as drip irrigation, sprinkler irrigation and so on, with the notion of more crop per drop in mind. All of these precision applications utilize extremely little energy, resulting in energy conservation.

Protection of Surface and Ground Water: Protecting the environment by efficient use of inputs such as fertilizers, chemicals and so on, which prevents their leakage into ground water or runoff.

Environmental Impact Reduction: Precision farming makes better management decisions to change inputs to meet production needs, ensuring small waste of any applied input to the environment.

Risk Reduction: Risk management is a popular method used by most farmers nowadays, which may be expected as income and environmental safety. Farmers frequently employ risk management in a production system by overestimating the unit cost of a given input. Thus, a farmer may apply an additional spray, add

additional fertilizer, purchase additional machinery or engage farm labour to ensure that the product is produced/harvested/sold on time, thereby ensuring economic return.

Conclusion

Precision farming is a cornerstone of modern agricultural practices, offering significant improvements in both crop yield and production efficiency. By utilizing advanced technologies, it provides critical data that supports informed management decisions. A major advantage of precision farming is the reduction in chemical and fertilizer costs, achieved through the precise and targeted application of inputs (Zhang et al. 2002). This approach not only enhances production but also ensures the consistency and superior quality of crops. Additionally, precision farming enables farmers to maintain accurate farm records, which lead to more strategic and data-driven decision-making. The adoption of precision farming technologies also results in reduced cultivation costs by optimizing the use of resources, such as seeds, water, and fertilizers. Moreover, technologies like variable rate application reduce the reliance on excessive chemical inputs, while the controlled application of irrigation water helps minimize nutrient leaching and deep percolation, fostering more sustainable and environmentally responsible farming practices (Bramley and Buttar, 2007)

References

1. Bramley RGV and Buttar A. The role of precision farming in reducing cultivation costs and improving resource use efficiency. Agricultural Systems. 2008;98(2):51-60.

- 2. Patterson DA and Nair SS. Precision farming: Enhancing resource utilization and improving returns. Horticultural Research Journal. 2011;18(3):45-58.
- 3. Schofield R. Precision farming: An integrated approach to managing agriculture. Agricultural Systems. 2009;101(2).
- 4. Sharma, RS and Nadarajan N. Precision farming in horticulture: Role of modern technologies in managing spatial and temporal variability. International Journal of Agricultural Science. 2009;9(1):62-72.
- 5. Zhang N, Wang M and Li Z. Precision farming: An opportunity for site-specific management of crops. Biosystems Engineering. 2002;82(2):305-315.

Agri Roots

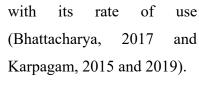
e- Magazine

Trends and Growth Rates of Major Renewable Energy Sources: A Decadal Analysis

ARTICLE ID: 0216

V. Nandhini

Assistant Professor, Dhanalakshmi Srinivasan Agriculture College, Perambalur- 621 212, Tamil Nadu, India


nergy lies at the heart of the global economy and acts as a vital driver of both economic and social progress. The journey of nations from basic survival to modern development has been largely fueled by access to various forms of energy.

Without reliable energy services. meaningful economic advancement is impossible. The nearly availability and type of resources energy in country often shape development level and the overall quality of life

enjoyed by its people (Karpagam, 2015 and 2019).

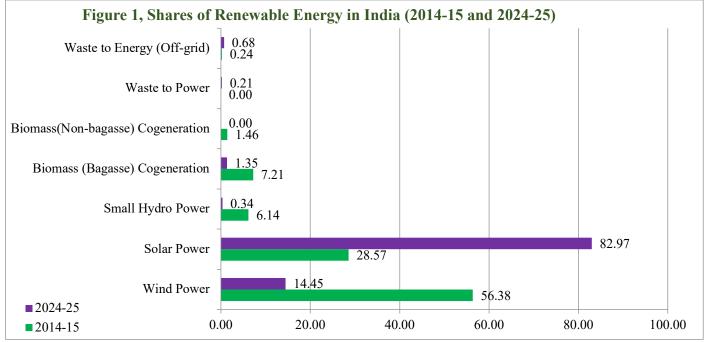
Energy supports almost every aspect of daily life. From cooking, heating, and lighting to powering essential services such as healthcare, education, food production and preservation, transportation, industrial output, and mining. Energy is a key enabler of human activity and well-being (Karpagam, 2015 and 2019).

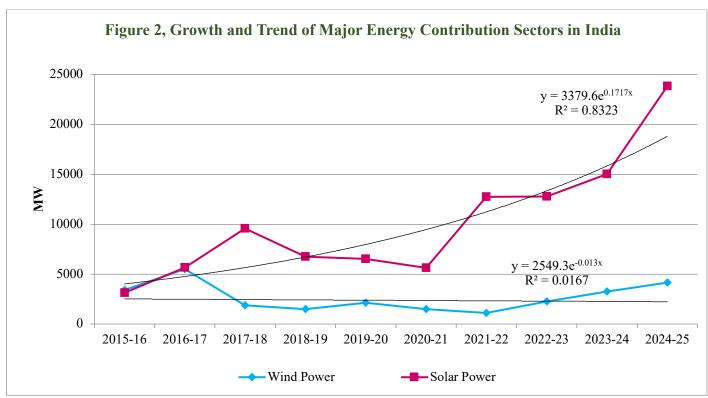
A common classification is to differentiate energy forms into exhaustible (depletable) and nondepletable (renewable) energy resource. Exhaustible resources are those that diminish with use. They offer only a limited supply over time. In contrast, renewable resources can replenish naturally. For example, wind is inherently renewable, while biomass is considered renewable only when its rate of regrowth keeps pace

Renewable Energy

Major renewable energy sectors are solar and wind. Solar energy is the energy derived from the sun's radiation, which can be

converted into electricity or heat for various uses (U.S. Department of Energy, 2023). Wind energy is the process of converting the kinetic energy of moving air into mechanical power or electricity using wind turbines (U.S. Department of Energy, 2023).


Renewable Energy Status in India


Solar power has emerged as the important source, increasing its share significantly from 28.57 per cent in 2014–15 to 82.97 per cent in 2024–25. In contrast, wind power, which held the largest share in 2014–15

at 56.38 per cent, has declined sharply to 14.45 per cent in 2024–25. Other renewable sources such as small hydro power, biomass cogeneration (bagasse and non-bagasse), and waste-to-energy contribute only marginally in 2024–25, with most showing a decline in

share compared to 2014–15 (MNRE, 2025). This shift underscores India's strategic focus on solar energy, driven by falling costs, favorable policies, and abundant solar resources, reflecting a clear national priority toward a solar-powered future.

Growth and Trend of Major Energy Contribution Sectors in India

Figure 2 shows the growth and trend of major energy contribution sectors in India. The installed capacity of solar energy was 3,130.36 MW in 2014–2015 and increased to 23,832.87 MW in 2024–2025, indicating a strong upward trend with a compound growth rate of 18.64 percent. In contrast, the installed capacity of wind energy was 3,423.05 MW in 2014–2015 and reached only 4,151.31 MW in 2024–2025. The trend for wind energy shows a decline, with a compound growth rate of -0.99 percent over the years. Overall, the graph highlights solar energy as the primary driver of India's renewable energy growth (MNRE, 2025).

Conclusion

Renewable energy options, solar and wind power stand out as key contributors. In India, the renewable energy landscape has witnessed a significant shift toward solar power, which has seen remarkable growth in installed capacity and share over the past decade. Solar energy plays a crucial role in reducing greenhouse gas (GHG) emissions and combating climate change. As a clean and renewable source, it generates electricity without releasing carbon dioxide or other harmful pollutants. India's growing reliance on solar power significantly lowers dependence on fossil fuels, which are the primary contributors to global warming. This shift supports India's climate goals under the Paris Agreement and its commitment to achieving net-zero emissions. Solar energy also improves air quality and reduces environmental degradation. Its adoption contributes to long-term energy security and resilience against climate-related risks. By replacing conventional energy sources, solar power is helping to stabilize global temperatures. Continued investment in solar technology is essential for accelerating climate action and promoting sustainable development.

References

- 1. Karpagam M (2015), Environmental, Sterling Publishers Pvt. Ltd. New Delhi.
- 2. Karpagam M (2019), Environmental Economics A Textbook, Sterling Publishers Pvt. Ltd. New Delhi.
- 3. MNRE (2025), Year-wise Achievement, https://mnre.gov.in/en/year-wise-achievement/
- **4.** Rabindra N. Bhattacharya (2017), Environmental Economics An Indian Perspective, Oxford University Press
- 5. U.S. Department of Energy. (2023). Solar energy and wind energy basics. Retrieved from https://www.energy.gov/eere/solar/solar-energy-basics

Agri Roots

- Magazine

Moringa Leaves: A Nutrient-Rich Superfood

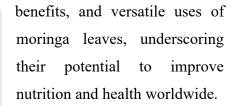
ISSN: 2583-9071

ARTICLE ID: 0217

Priya Pandey¹, R.N. Kewat², Sheetanu Singh³, Garima Dixit⁴

^{1,3}Research Scholar, Department of Biochemistry, Acharya Narendra Deva University of Agriculture and Technology, Kumarganj, Ayodhya

²Professor, Department of Biochemistry, Acharya Narendra Deva University of Agriculture and Technology, Kumarganj, Ayodhya


⁴Research scholar, Department of Food science and Nutrition, Acharya Narendra Deva University of Agriculture and Technology, Kumarganj, Ayodhya

oringa oleifera, commonly known as the drumstick or horseradish tree, is a highly valued plant native to tropical and subtropical regions. Nearly every part of the tree—

leaves, flowers, pods, and seeds—has diverse applications in food, medicine, and industry. The leaves, in particular, are rich in essential nutrients including proteins, vitamins (A, B-complex, C, E, and K), minerals (iron, calcium, manganese), and antioxidants, making them a potent dietary supplement. Traditionally, moringa leaves have

been used to treat a variety of ailments such as intestinal worms, conjunctivitis, respiratory diseases, anemia, and skin conditions. Its medicinal properties extend to antibacterial, anti-inflammatory, and antioxidant effects. Additionally, moringa supports food security and rural development by serving as both

human food and livestock feed. The nutritional composition of moringa leaves varies with geographic location, influencing their therapeutic efficacy. This review highlights the biochemical composition, health

Moringa oleifera, often referred to as the "drumstick tree" or "horseradish tree," is a member of the Moringaceae family. This genus, Moringa, comprises 13 different species,

with Moringa oleifera being the most commonly cultivated. It is native to tropical and subtropical areas around the world. Moringa leaves have long been used in traditional remedies for a variety of purposes. They were commonly applied to the stomach to help expel intestinal worms, and an infusion made from the leaves

been used eyewash has as treat an conjunctivitis. Soup prepared from drumstick leaves is considered highly effective for preventing and managing conditions such as tuberculosis, bronchitis, and asthma. This soup is often enhanced with lime juice, pepper, and salt to suit the patient's taste. Additionally, moringa leaves have been found to help reduce thyroid hormone levels. In the Philippines, women traditionally consume moringa leaves with shellfish and chicken soup to support breast milk production. Beyond medicinal uses, the mashed leaves are sometimes used for scrubbing utensils and cleaning surfaces. Moringa flowers are recognized for their cholagogue, stimulant, diuretic, and tonic properties, which help promote bile flow. Agriculturists also mix moringa leaves into animal feed to maintain healthy livestock.

Medicinally, moringa leaves have been used to address a wide range of health issues, including bacterial infections, urinary tract infections, HIV/AIDS, fever, liver disorders, tumors, high blood pressure, diarrhea, dysentery, ulcers, headaches, and as an antioxidant. They are also valued for treating protein and iron deficiencies, vitamin and mineral shortages, enhancing lactation, and managing catarrh and scurvy. Moringa is highly valued for its exceptional nutritional profile, being rich in vitamins A, B (including riboflavin, pyridoxine, folic acid, and niacin), C, E (alphatocopherol), and beta-carotene. It also provides significant amounts of essential minerals such as iron and calcium, and is a notable source of essential amino acids, making it a valuable addition to the diet. (Jaiswal et.al.,2022)

Biochemical Composition of Moringa Leaves

Moringa leaves are packed with vital nutrients, including proteins, vitamins, minerals, and antioxidants. The following table summarizes the key components found in 100 grams of fresh moringa leaves:

Nutrient	Amount per 100 g of Moringa oleifera Leaves	
Carbohydrates	9.1 g	
Dietary Fiber	2.1 g	
Fat	1.7 g	
Protein	8.1 g	
Vitamin A equiv.	80 μg	
Thiamine (B1)	0.103 mg	
Riboflavin (B2)	0.112 mg	
Niacin (B3)	1.5 mg	
Pantothenic acid (B5)	0.48 mg	
Vitamin B6	0.129 mg	
Folate (B9)	41 μg	
Vitamin C	8.6 mg	

(Abbas *et.al.*,2018)

The plant's nutritional composition is a key factor influencing its nutritional, medicinal, and therapeutic benefits. Moreover, the chemical makeup of the fiber fractions impacts the digestibility of the feed, which in turn affects how effectively animals can utilize it. It has been observed that the nutritional content of Moringa leaves varies depending on the geographic location.

Health Benefits

Moringa leaves possess antibacterial and antiinflammatory properties. Drinking tea made from the leaves is a traditional remedy for gastric ulcers and diarrhea. Due to their high protein and fiber content, moringa leaves are an excellent dietary option for individuals suffering from malnutrition. They are also used to treat fevers, bronchitis, infections of the eves and ears, and inflammation of the mucous membranes. The leaves are rich in iron, making them beneficial for those with anemia, and they are also used in managing scurvy and various skin diseases. Among all parts of the plant, the leaves are considered the most nutritious, providing significant amounts of B vitamins, vitamin C, provitamin A (as beta-carotene), vitamin K, manganese, and protein, along with other essential nutrients. Moringa leaf powder is widely recognized for its substantial health benefits, especially in regions by food scarcity and malnutrition. affected Additionally, rubbing the leaves on the temples is a traditional method to relieve headaches. (Abbas *et.al.*,2018)

How to Use Moringa Leaves

Moringa is regarded as one of the world's most valuable trees because nearly every part of it can be utilized for food, medicine, or industrial applications (Khalafalla et al., 2010). Its leaves, flowers, and fresh

pods are commonly consumed as vegetables, and it is also used as animal feed (Anjorin et al., 2010). With its wide range of uses, the moringa tree holds great potential for enhancing nutrition, improving food security, and supporting rural development.

Conclusion

Moringa oleifera stands out as a "miracle tree" due to its exceptional nutritional and medicinal qualities. The leaves are the most nutrient-dense part of the plant, offering a rich source of essential vitamins, minerals, proteins, and antioxidants that contribute to its wideranging therapeutic effects. Traditional uses of moringa leaves for treating infections, inflammation, malnutrition, and chronic diseases are supported by their biochemical properties. Moreover, moringa's adaptability and multiple uses—from human nutrition to animal feed-make it a valuable resource for enhancing food security and promoting sustainable rural development. Continued research and wider adoption of moringa leaf products could play a significant role in addressing global nutritional deficiencies and improving public health, especially in regions facing food scarcity.

References

- 1. Abbas, R., Elsharbasy, F. S., & Fadlelmula, A. A. (2018). Nutritional values of Moringa oleifera, total protein, amino acid, vitamins, minerals, carbohydrates, total fat and crude fiber, under the semi-arid conditions of Sudan. Journal of Microbial & Biochemical Technology, 10(2) 1948-5948.
- 2. Jaiswal, V., Singh, G., & Kaur, J. (2022). Miracle tree: Moringa oleifera. International Journal of Pharmaceutical Sciences and Research, 13(5), 1924–1934.
- 3. Moyo, B., Masika, P. J., Hugo, A., & Muchenje, V. (2011). Nutritional characterization of Moringa (Moringa oleifera Lam.) leaves. African Journal of Biotechnology, 10(60), 12925–12933.

Agri Roots

e- Magazine

Terminalia arjuna: A Traditional Cardiac Tonic with Modern Therapeutic Potential

ARTICLE ID: 0218

Sheetanu Singh¹, Priya Pandey², Garima Dixit³

^{1,2}Ph.D.Scholar, Department of Biochemistry, ANDUAT, Kumarganj (Ayodhya)

³Ph.D.Scholar, Department of Community Science, ANDUAT, Kumarganj (Ayodhya)

he *Terminalia arjuna* tree, commonly referred to as the Arjuna tree, is a tall, majestic, evergreen to deciduous plant native to the Indian subcontinent. Found predominantly along riverbanks, dry streambeds, and in moist deciduous forests across India, Sri Lanka, and parts of Southeast

Asia, this tree is easily identified by its thick, smooth, white to pinkishgray bark and widespreading crown. In addition to its ecological importance, Arjuna holds significant value in the ancient healing traditions of Ayurveda.

In Ayurvedic medicine,

Arjuna has been revered for over 2,500 years as a "Hridaya Roganashini"—the destroyer of heart diseases. Ancient texts like the *Charaka Samhita* and *Sushruta Samhita* mention its use in managing heart ailments, circulatory disorders, and other chronic conditions. With time, this traditional wisdom has gained scientific validation, particularly in the context

of cardiovascular health. Today, *Terminalia arjuna* is considered a botanical treasure that effectively bridges ancient healing practices and modern pharmacological science.

Botanical Profile

Belonging to the Combretaceae family, the Arjuna tree

typically grows up to 60–80 feet tall. It thrives in moist, well-drained soils and is commonly found in the wild near water bodies. The tree's bark is its most valued component in both traditional and modern medicine. Although the leaves and fruits also possess therapeutic

properties, they are used less frequently. Known by various regional names across India, "Arjuna" remains the most universally recognized, particularly in Ayurvedic texts.

Phytochemical Composition

The therapeutic potential of Arjuna lies in its rich phytochemical profile. The bark, in particular, is a repository of biologically active compounds, including:

- 1. Tannins: Polyphenolic compounds with strong astringent and antioxidant properties that aid in tissue repair, reduce inflammation, and protect against oxidative stress.
- 2. Flavonoids (Arjunone, Arjunolone): These potent antioxidants combat free radicals, reduce oxidative stress, and exhibit anti-inflammatory and vasodilatory effects, thereby supporting vascular health.
- 3. Glycosides (Arjunetin, Arjunic Acid): Known for their cardiotonic effects, these compounds strengthen the heart muscle, regulate blood pressure, and help reduce arterial lipid accumulation.
- **4. Saponins**: Plant-based steroids that lower LDL cholesterol, raise HDL cholesterol, and boost immune function, contributing to cardiovascular protection.
- 5. Essential Minerals (Calcium, Magnesium, Zinc):
 These minerals support heart rhythm regulation,
 muscle contraction, nerve function, and enzymatic
 activity, further enhancing Arjuna's overall
 therapeutic efficacy.

Medicinal Uses

1. Cardiovascular Health

The primary medicinal application of Arjuna lies in its cardioprotective capabilities. It strengthens cardiac muscles, improves pumping efficiency, and reduces cardiac workload. Clinical and traditional evidence supports its use in managing conditions such as congestive heart failure, angina, and hypertension.

Arjuna acts as a natural beta-blocker, reducing heart rate and blood pressure without the side effects of conventional medications. Its mild diuretic properties also help reduce fluid retention and cardiac strain.

2. Antioxidant and Anti-inflammatory Effects

Rich in tannins and flavonoids, Arjuna combats oxidative stress and inflammation—both major contributors to chronic diseases. These properties make it beneficial not only for cardiovascular health but also for supporting immunity and mitigating degenerative conditions.

3. Wound Healing and Skin Care

Arjuna bark, when applied externally as a paste or decoction, accelerates wound healing. Its astringent and antimicrobial properties help stop bleeding, prevent infections, and promote tissue regeneration, making it useful for treating cuts, ulcers, and skin rashes.

4. Gastrointestinal Benefits

Traditionally used to treat diarrhea, dysentery, and inflammatory bowel conditions, Arjuna's tannins soothe the intestinal lining, reduce irritation, and help control fluid loss, offering natural gastrointestinal relief.

5. Lipid Regulation

Arjuna has been shown to lower LDL and triglyceride levels while boosting HDL cholesterol. This lipid-lowering effect, primarily due to its saponin and flavonoid content, helps prevent atherosclerosis and coronary artery disease.

6. Liver and Kidney Support

Arjuna supports liver detoxification, improves hepatic cell regeneration, and protects against damage from toxins. Its diuretic properties also aid kidney function, urinary flow, and management of kidney stones and infections.

Forms of Use

Arjuna's therapeutic versatility is matched by the range of forms in which it is consumed:

- Churna (Powder): Traditionally consumed with water, honey, or milk to support heart health and digestion.
- Decoction (Kwath/Kashayam): Prepared by boiling the bark to extract active compounds, commonly used in managing heart and liver disorders.
- Capsules/Tablets: Offer standardized dosages and convenient administration, particularly for heart and cholesterol management.
- Arjuna Tea/Juice: Popular as a heart-friendly beverage that supports circulation and reduces fatigue.

Dosage and Safety Considerations

The recommended dosage varies based on the form and individual health conditions:

- Powder: 3–6 grams per day, divided into two doses.
- **Decoction**: 30–50 ml once or twice daily.
- Capsules/Tablets: As per manufacturer's instructions or physician's guidance.

Arjuna is generally well-tolerated when used under the supervision of a healthcare provider. However, due to its cardiotonic and blood pressure-lowering properties, it may interact with medications like beta-blockers,

diuretics, or calcium channel blockers, potentially leading to excessive reductions in heart rate or blood pressure. Monitoring is advised, particularly in patients already on cardiovascular drugs or those with hypotension.

Special caution should also be observed in pregnant or breastfeeding women and individuals scheduled for surgery. Self-medication is not recommended, and usage should always be guided by a qualified medical or Ayurvedic practitioner.

Conclusion

Terminalia arjuna stands as a powerful testament to the enduring relevance of traditional medicine in contemporary healthcare. With a rich history rooted in Ayurveda and increasing validation through modern research, Arjuna offers a natural, effective remedy for a wide range of health issues—chiefly cardiovascular diseases. Its complex phytochemical profile supports heart health, reduces inflammation, regulates lipids, and enhances overall well-being.

Available in various forms to suit modern lifestyles, Arjuna provides a holistic approach to managing maintaining chronic conditions and wellness. However, responsible use under expert supervision is essential to ensure safety and optimize benefits, especially when alongside used modern pharmaceuticals. As the global search for safe and effective plant-based medicines continues, Terminalia arjuna shines as a beacon of botanical efficacy with deep cultural and medicinal roots.

References

- 1. Amalraj, A., & Gopi, S. (2017). Medicinal properties of Terminalia arjuna (Roxb.) Wight & Arn.: A review. Journal of Traditional and Complementary Medicine, 7(1), 65–78. https://doi.org/10.1016/j.jtcme.2016.02.003Bottom of Form
- 2. Terminalia: Uses, Benefits, and Dosage. Retrieved from https://www.drugs.com/npp/terminalia.html
- 3. Uses, Benefits, and Dosage. Retrieved from https://www.drugs.com/npp/terminalia.html

ISSN: 2583-9071

Agri Roots

- Magazine

Advanced Management of Vegetable Nursery

ARTICLE ID: 0219

Shobhit Sharma^{1*}, Pavitra Dev², Akshya Kumar¹, Krishan Choudhary¹

^{1*}Research Scholar, Department of Horticulture, Chaudhary Charan Singh University, Meerut, Uttar Pradesh, India 250004.

²Assistant Professor, Department of Horticulture, Chaudhary Charan Singh University, Meerut, Uttar Pradesh, India 250004.

prelude to successful vegetable cultivation.

The use of advanced nursery techniques

ensures the production of vigorous, uniform, and disease-free seedlings, ultimately leading to higher productivity and better crop performance. This article highlights the key components and strategies of advanced vegetable nursery emphasizing management,

recent technological advancements and sustainable practices. The success of vegetable production depends on good vegetable nursery management. Strong, uniform and healthy seedlings are produced with advanced nursery approaches which results in improved crop yield and better quality.

1. Introduction

A nursery is where seedlings spend time under special care prior to being transplanted onto the main field.

Advanced nursery management is crucial for growing vegetables in the present day because it helps the seedlings, raises yields and improves how resources

are managed. Because many people now want quality vegetables and hybrids with high yield, nurseries must be managed efficiently.

2. Site Selection and Nursery Structures

Nursery Site selection should be strategic to

ensure to have good drainage, easy access and the right microclimate in the nursery. Raised beds, well-drained soils, and livestock protection are all needed. Modern nurseries increasingly rely on control structures such as:

➤ Polyhouses And Shade Nets: poly house provides better protection because rainfall is completely prevented from entering the poly house, making leaf diseases easier to control. Use of polyhouses and

shade nets to protect seedlings from direct sunlight, strong winds, and various insect pests.

➤ Insect-Proof Net Houses: Insect proof net houses are important to prevent viruses in tomato and chili seedling production.

3. Growing Media

Media is one of the important components for advanced nursery raising system. Physical characteristics of the media are important for water and nutrient holding capacity as well as proper aeration for optimum root growth. Advanced nurseries use soil-free media to prevent diseases transmitted by soil and maintain uniform germination. A good growing media should have good drainage aeration, water retention properties within pH reaction neutral. Preferred media combinations include:

Cocopeat: Cocopeat is a byproduct of fiber extraction from coconut husks. It is a 100% natural, biodegradable, fibrous, and spongy material. It has a high C:N ratio, hence it takes a long time to degrade. It also has a high-water retention capacity, about seven to nine times its own weight. Cocopeat has antifungal and antibacterial effects.

Vermiculite and Perlite: It is grey-white in color silicaceous material. perlite improves soil aeration and drainage, preventing root rot, while vermiculite retains moisture and nutrients, supporting healthy seedling growth. Together, they enhance soil structure for optimal seedling development.

4. Containers

Pro-Trays or Plug Trays: In advanced nurseries, the production of seedlings often uses pro-trays, also known as plug trays. each tray consists of multiple

small cells which means each seed can be sown one at a time. It helps grow strong roots, limits the risks of transplant shock and allows seedlings to grow nicely. These methods increase efficiency when using resources, control diseases and promote easy transplantation. Pro-trays are easy to move, can be used again and help workers work faster. Firmly disinfect the media using formalin or steam to get rid of microorganisms before use.

5. Seed Treatment and Sowing

Seed treatment is the most common method adopted for healthy seedlings production. Seed treatment is necessary to prevent early-stage diseases and improve germination.

- Chemical treatment: Use of fungicides like carbendazim or thiram.
- Biological Treatments: Application of Trichoderma viride, Pseudomonas fluorescens, or neem-based products.
- **Priming:** Enhances seed vigor and synchronizes germination.

Seeds should be sown at appropriate depths in trays, ensuring one seed per cavity to avoid competition.

6. Irrigation and Nutrient Management

Consistent and light irrigation is required for seedling growth. In advance nurseries drip and mist systems are used to apply water precisely.

Fertigation: Application of water-soluble fertilizers through irrigation systems.

- Initial stages: 19:19:19 NPK formulation.
- Later stages: 13:0:45 or 12:61:00 depending on nutrient needs.

 Micronutrients: Zinc, iron, and boron may be applied as foliar sprays based on visual deficiency symptoms.

7. Pest and Disease Management

Advanced pest management in nurseries involves:

Pest Management

- Biological agents: Beauveria bassiana, Metarhizium anisopliae.
- > Yellow/blue sticky traps to control flying insects.
- Regular monitoring and sanitation.

Disease management

Damping-off

Damping-off is a common and very serious fungal disease of nursery plants.

Soil drenching with copper oxychloride 2 2g/liter or seed treatment with Thiram or carbendazim @ 3 g/kg seed are effective method to control damping-off.

Preventive Measures: Use of sterilized media, clean water, and disease-free seeds.

8. Hardening and Transplantation

Hardening plants, also known as "hardening off" is the process of gradually acclimating plants to outdoor conditions before transplanting them from a protected environment like a greenhouse or indoors.

Before transplanting, seedlings must be hardened to withstand field conditions. This includes:

- Reducing water supply.
- Gradual exposure to sunlight.
- Suspending fertilization.

Hardened seedlings exhibit better survival, early establishment, and enhanced resistance to transplant shock.

9. Automation and Record Keeping

Technological interventions are increasingly being adopted:

- Environmental control systems: Manage temperature, humidity, and light in protected structures.
- Digital monitoring: For seedling age, batch information, and health status.
- Automated irrigation systems: Improve efficiency and reduce labor.

Conclusion

Vegetable nurseries require advanced management to address the difficulties of modern agriculture. Nurseries can help vegetable crops succeed by blending precision techniques, protected cultivation, and sustainable practices. Encouraging farmers and commercial producers to use such technologies will increase horticultural production as well as profitability.

References

- 1. Choudhary, B. R. (2015). Vegetables. New Delhi: Kalyani Publishers.
- 2. Gautam, R., Singh, P. K., Kumar, P., Singh, M. C., dhital, S., Rani, M., & Kumar, J. (2021). Advances in soilless cultivation technology of horticultural crops. The Indian Journal of Agricultural Sciences, 91(4), 503-508.
- 3. Krishnan, P. R., Kalia, R. K., Tewari, J. C., & Roy, M. M. (2014). Plant nursery management: principles and practices. Central Arid Zone Research Institute, Jodhpur, 40.

- 4. Pandiyaraj, P., Kumar, Y. R., Vijayakumar, S., & Arindam, D. A. S. (2017). Modern nursery raising systems in vegetables. International Journal of Agriculture Sciences, 9(52), 4889-4892.
- 5. Singh, R. R., Meena, L. K., & Singh, P. (2017). High tech nursery management in horticultural crops: a way for enhancing income. International Journal of Current Microbiology and Applied Sciences, 6(6), 3162-3172.