

# **Agri Roots**

e- Magazine

# Role of Environmental Factors in Pest Outbreaks

**ARTICLE ID: 0262** 

Nargis Khatoon

Student, School of Agriculture & Environmental Sciences, Shobhit Deemed University, Meerut (U.P.)

ests are one of the major constraints in agricultural production, responsible for significant yield reduction and economic loss worldwide. Their population dynamics and outbreak patterns are not only determined by their biology and

host availability but are also heavily influenced by environmental factors. A pest outbreak can be defined as a sudden and explosive increase in pest numbers, crossing the economic threshold level,

and causing serious damage to crops, forests, or stored products.

Agricultural ecosystems are highly dynamic and are affected by climatic and ecological changes. Pest outbreaks occur when favorable conditions allow insect populations to reproduce rapidly, overwhelming natural control mechanisms. Among these conditions, environmental factors such as temperature, humidity, rainfall, wind, and broader climatic changes like global warming play a pivotal role. Each factor influences insect behavior, reproduction, mortality, dispersal, and interaction with host plants and n...

Temperature is considered the most critical environmental factor influencing insect development. Insects are poikilothermic, meaning their metabolic rate and life processes depend directly on ambient temperature. High temperatures generally shorten the development period,

increase reproduction rate, and allow multiple generations per year. For example, the diamondback moth (*Plutella xylostella*), a major pest of crucifers, develops more rapidly under warm conditions, often leading to continuous infestations.

On the other hand, extremely high or low temperatures can suppress pest populations. Prolonged winters reduce survival rates of overwintering pests, while sudden heat waves may kill vulnerable stages like larvae or pupae. However, under climate change scenarios, milder winters in many regions allow greater survival of pests such as aphids, resulting in early-season outbreaks.

# Humidity

Relative humidity influences pest survival, fecundity, and egg viability. Many insect pests require certain moisture levels to maintain physiological processes.

**Temperature** 

High humidity, combined with moderate temperatures, favors the multiplication of pests such as whiteflies, aphids, and mites. Similarly, fungal pathogens of plants and insects flourish under humid conditions, indirectly impacting pest-host interactions.

Excessive humidity may also create conducive environments for pests of stored grains, such as beetles and moths, to thrive. Conversely, dry conditions can suppress pest outbreaks by reducing egg hatching and increasing desiccation mortality. For instance, spider mites (Tetranychus spp.) prefer dry conditions, while other sucking pests decline in numbers during drought stress.

#### Rainfall

Rainfall can have dual effects on pest populations. Heavy rains may physically dislodge and wash away small pests like thrips, aphids, and whiteflies from plant surfaces, thereby reducing their populations. At the same time, rainfall promotes lush vegetative growth, providing abundant food resources for pests like grasshoppers and armyworms. Alternating wet and dry conditions create ideal circumstances for locust breeding, often triggering widespread outbreaks.

Excessive or untimely rains also lead to waterlogged fields, which favor pests like rice stem borers and planthoppers. Droughts, in contrast, may reduce some pest populations but can simultaneously weaken crops, making them more vulnerable to pest attacks.

## Wind

Wind is a critical environmental factor influencing the dispersal and migration of pests. Many small-bodied insects such as aphids and whiteflies rely on wind currents for passive long-distance movement.

Migratory pests like locusts and planthoppers exploit wind direction and speed to colonize new regions rapidly. In some cases, strong winds can suppress outbreaks by physically damaging or dispersing insect populations, but more often, winds aid in the spread of pests over large areas.

### **Climate Change**

Climate change is a global phenomenon reshaping pest dynamics. Rising temperatures, unpredictable rainfall, and increased frequency of extreme weather events significantly influence pest distribution and outbreak frequency. Warmer climates are expanding the geographical range of many pests to higher latitudes and altitudes where they previously could not survive. For example, the coffee berry borer (Hypothenemus hampei), once restricted to lower altitudes, is now observed in higher coffee-growing areas du...

Similarly, invasive species like the fall armyworm (Spodoptera frugiperda) have spread rapidly across continents due to favorable environmental conditions facilitated by climate variability. These shifts create new challenges for pest management, as traditional knowledge and practices may not be sufficient in altered agro-ecosystems.

#### **Interaction with Host Plants and Natural Enemies**

Environmental factors do not act on pests in isolation; they also influence host plants and natural enemies. Drought stress weakens plants, lowering their natural defense mechanisms and making them more susceptible to pests such as stem borers. Conversely, vigorous plant growth under favorable rainfall can attract pests that thrive on tender tissues.

Similarly, predators, parasitoids, and pathogens of pests are sensitive to environmental changes. A decline in natural enemy populations due to adverse weather conditions can remove important checks on pest growth, leading to outbreaks. This imbalance is particularly visible in monoculture farming systems where biodiversity is already low.

#### **Case Studies**

- Locust swarms in East Africa and South Asia (2020) were triggered by unusual cyclonic activity and heavy rainfall, creating ideal breeding conditions.
- Brown planthopper outbreaks in Southeast Asian rice fields are linked with high temperature, high humidity, and excessive nitrogen fertilizer use.
- The pink bollworm in cotton fields has shown altered outbreak cycles under changing climate conditions, particularly in warmer regions of India.

### **Management Implications**

The role of environmental factors in pest outbreaks underscores the importance of incorporating weather and climate data into pest management strategies. Forecasting models based on temperature, humidity, and rainfall patterns can help predict pest incidence. Farmers can take preventive actions such as adjusting sowing dates, choosing resistant varieties, or deploying biological control agents at the right time.

Integrated Pest Management (IPM) strategies should emphasize ecological approaches that enhance natural control mechanisms while reducing chemical dependency. Climate-smart agriculture, which integrates pest management with resilience-building practices, is essential to address the challenges posed by environmental variability.

#### Conclusion

Environmental factors play a decisive role in determining pest outbreak dynamics. From temperature and humidity to rainfall, wind, and broader climate change, these factors shape the survival, reproduction, and spread of pests in agricultural ecosystems. As climate variability intensifies, pest outbreaks are expected to become more frequent and severe. Strengthening pest forecasting, adopting IPM practices, and building farmer awareness are crucial steps toward minimizing losses and ensuring sustainable.

#### References

- 1. Dent, D. (2000). Insect Pest Management. CABI Publishing, UK.
- 2. Dhaliwal, G.S., Jindal, V., & Mohindru, B. (2015). Crop Losses due to Insect Pests: Global and Indian Scenario. Indian Journal of Entomology, 77(2), 165–168.
- **3.** Kogan, M. (1998). Integrated Pest Management: Historical Perspectives and Contemporary Developments. Annual Review of Entomology, 43, 243–270.
- 4. Prakash, A., & Rao, J. (1995). Pest Management in the Tropics. International Book Distributors, India.
- 5. Singh, R.P. (2010). Integrated Pest Management: Principles and Practice. New India Publishing Agency, New Delhi.