

ISSN: 2583-9071

Agri Roots

- Magazine

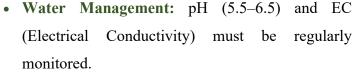
Hydroponics in Vegetable Crops

ARTICLE ID: 0295

A Reshma¹, Syed Sadarunnisa²

¹College of Horticulture, SKLTHU, Rajendranagar, Hyderabad

²Department of Vegetable Science, COH, Dr.YSRHU, Ananthrajupeta, Sri Annamayya Dst.


ydroponics is a method of growing plants without soil, using nutrient-rich water solutions. This technique allows for

controlled cultivation of vegetables in various

environments, including greenhouses, vertical farms, and urban spaces.

Definition: Cultivation of plants in water-based nutrient solutions.

Origin: Derived from the Greek words "hydro" (water) and "ponos" (labor).

• Environmental Control: Temperature, humidity,

and light are regulated for optimal plant growth.

Advantages of Hydroponics in Vegetable Production

Hydroponics offers several advantages over conventional soil-based agriculture:

Importance: Offers sustainable, space-efficient, and high-yield alternatives to traditional farming.

Principles of Hydroponic Systems

Hydroponics relies on delivering essential nutrients directly to plant roots via water. Key components include:

- Growing Medium: Inert materials such as cocopeat, perlite, vermiculite, or rockwool.
- Nutrient Solution: A balanced mix of macro- and micronutrients (N, P, K, Ca, Mg, Fe, etc.).

- No Soil Requirement: Eliminates soil-borne diseases and pests.
- Water Efficiency: Uses up to 90% less water than traditional farming.
- Faster Growth: Direct nutrient access accelerates plant development.
- **Space-Saving:** Vertical and stacked systems maximize space utilization.
- Controlled Environment: Enables year-round production with consistent quality.

• Cleaner Produce: Reduces exposure to soil contaminants and pesticides.

Systems of Soilless Culture

Hydroponic culture is classified according to the type of substrate, container, nutrient delivery system, and drainage method.

1. Solution Culture or Liquid Hydroponics

a. Circulating (Closed) Systems

Plants are grown in a liquid medium inside pipes or other containers, with the nutrient solution continuously recirculated.

i. Nutrient Film Technique (NFT)

In this system, plant roots are in direct contact with a thin film (0.5 mm) of nutrient solution flowing through the channels. Seedlings are placed in custom-made pots and secured in PVC or plastic channels.

ii. Deep Flow Technique (DFT)

This system uses PVC pipes filled with a 2–3 cm deep layer of nutrient solution. Plants are placed in pots fitted into holes along the pipes, allowing roots to remain partially submerged.

b. Non-Circulating (Open) Systems

In these systems, the nutrient solution is applied once and not recirculated. The pH and EC of the solution are maintained throughout the growing period.

i. Root Dipping Technique

Plants are grown in small pots containing a growing medium. The lower part of the roots is submerged in nutrient solution, allowing both aeration and nutrient absorption.

ii. Floating Technique

Plants are placed in small pots fixed to Styrofoam sheets floating on the nutrient solution. The solution is

aerated using air pumps to ensure adequate oxygen supply.

iii. Capillary Action Technique

Pots filled with sand, gravel, or porous material such as coir dust absorb the nutrient solution through capillary action. This system is simple and suitable for small-scale or household cultivation.

2. Solid Media Culture (Aggregate Systems)

In this method, sterile solid media with high porosity, good aeration, high water-holding capacity, and efficient drainage are used. Common media include sawdust, peat moss, cocopeat, perlite, vermiculite, vermicompost, gravel, and rockwool.

a. Hanging Bag Technique

Plants are grown in thick UV-stabilized polyethylene bags (about 1 m tall) filled with cocopeat or coconut fiber. The bags are suspended with support, and the excess nutrient solution is collected below.

b. Grow Bag Technique

Plants are cultivated in UV-stabilized polyethylene grow bags (1 m \times 15–20 cm \times 8–10 cm). Depending on the crop, single or double rows are planted at 30–60 cm spacing. Fertigation is provided through stake drippers and lateral pipes.

c. Trench or Trough Technique

Plants are grown in troughs or trenches made of bricks, concrete, or UV-stabilized PVC/HDPE sheets. The trenches are filled with inert organic or inorganic media such as cocopeat, sand, perlite, or vermiculite.

d. Pot Technique

Plants are grown in plastic pots (4–12 inches in diameter) filled with sand, cocopeat, perlite, or vermiculite, either singly or in combination.

Aeroponics Technique

In aeroponics, plants are grown with their roots suspended in air within a dark chamber and periodically misted with nutrient solution. Styrofoam panels support the plants, allowing roots to absorb nutrients efficiently. This technique offers excellent aeration and nutrient uptake.

Common Hydroponically Grown Vegetables

Many vegetables with short growth cycles perform well under hydroponic conditions:

- Leafy Greens: Lettuce, spinach, kale
- Herbs: Basil, mint, parsley

- Fruiting Vegetables: Tomato, cucumber, capsicum, chilli
- Others: Strawberries, beans

Conclusion

In conclusion, hydroponics has revolutionized vegetable cultivation by offering an efficient and sustainable alternative to soil-based agriculture. Continuous advancements in technology, research, and development in olericulture will further enhance the success and adoption of hydroponic systems. These techniques provide a long-term, eco-friendly solution for future food production.

References

- 1. Anon. (2009). *Hydroponics: Soil-less Culture Book*. Department of Agriculture, Ministry of Agriculture. pp. 1–45.
- 2. Savva, D., and Passam, H. (2002). *Hydroponic Production of Vegetables and Ornamentals*. Embryo Publications, Athens, Greece.
- 3. Seerat Jan, et al. (2020). Hydroponics. *International Journal of Current Microbiology and Applied Sciences*, 9(8): 1779–1787.