

Agri Roots

- Magazine

Smart Biodegradable Packaging for Extending Shelf Life of Produce

ARTICLE ID: 0306

Dinesh Kumar Meena

Department of Horticulture, School of Agricultural Sciences and Technology, Babasaheb Bhimrao Ambedkar University (A Central University) Vidya Vihar, Raebareli Road, Lucknow-226025, (UP.)- India.

n recent years, the horticulture and fresh-produce sector has faced two interlinked challenges: the rapid perishability of fruits and vegetables post-

harvest, and the environmental burden of conventional plastic packaging. To address both issues, research is increasingly focusing on smart biodegradable packaging—materials and systems that not only degrade more sustainably petroleum-based than

Fresh fruits and vegetables

Regulation of the state of t

plastics but also actively monitor or regulate the storage environment. These may include antimicrobial additives, freshness indicators, sensors, or improved gas-barrier properties.

Fresh produce typically exhibits high respiration and water-loss rates, making it vulnerable to microbial contamination, ethylene-induced ripening, and mechanical injury. Traditional packaging (e.g., single-use plastics, polystyrene trays) provides physical

protection and some barrier functions but generally lacks active or intelligent features. Moreover, conventional plastics contribute significantly to

landfill accumulation and environmental pollution.

Biodegradable packaging, derived from biopolymers such as PLA (polylactic acid), chitosan, alginate, starch, proteins (e.g., zein) and agricultural waste fibres, offers a sustainable alternative.

When combined with

"smart" functionalities—such as antimicrobial release, freshness indicators, oxygen scavengers, and embedded sensors—such packaging systems show strong potential to enhance both sustainability and the shelf-life of produce.

For example, biodegradable films made from zeinstarch infused with natural antimicrobials (thyme oil and citric acid) have been reported to extend the shelf life of strawberries from 4 days (in conventional plastic boxes) to 7 days. Similarly, composite materials such as chitosan/titanium dioxide nanocomposites have shown promise in delaying ripening and microbial spoilage in fruits and vegetables.

A summary of key aspects of smart biodegradable packaging used for horticultural produce is provided below.

Key Aspects of Smart Biodegradable Packaging

Aspect	Description / Functionality	Examples and Evidence	Key Benefits
Base	Biopolymers derived from	PLA-based films with	Reduced plastic
Biodegradable	renewable sources (PLA,	antimicrobials; films from	pollution;
Materials	starch, chitosan, alginate,	alfalfa, soy hulls, and corncob	compostability;
	proteins, agricultural residues)	residues extended strawberry	alignment with
		and raspberry shelf life by 2-6	circular-economy
		days	goals
Smart/Intelligent	Embedded sensors, freshness	Packaging with oxygen/pH-	Quality tracking;
Features	indicators, gas sensors,	sensitive pigments (e.g.,	improved supply-
	QR/RFID traceability	anthocyanins); gas/temperature	chain management;
		sensors enabling real-time	reduced waste
		monitoring	
Produce-Specific	Tailored for fruits and	Biodegradable films on cherry	Extended freshness;
Applications	vegetables with high	tomatoes, kiwi, grapes reduced	reduced post-
	respiration/transpiration rates	respiration/transpiration and	harvest losses
		delayed browning	
Environmental &	Lower landfill waste, reduced	Smart Bioplastic project:	Dual benefit: shelf-
Sustainability	CO ₂ emissions,	replacement of plastics reduces	life extension +
Impact	compostability	tonnes of plastic waste and CO ₂	environmental
		emissions	sustainability
Challenges &	Need for adequate	Many lab-developed materials	Further
Barriers	mechanical, barrier, and	do not yet meet industrial	development
	thermal properties; cost;	requirements	required for
	scalability; regulatory safety		commercial
			adoption
Future Directions	IoT-enabled packaging, AI-	Recent reviews highlight	Cost-effective,
	integrated systems,	advanced preparation methods	efficient, and
		and sustainability trends	

nanocomposites,	waste-	traceable packaging
derived biopolymers		systems

Key Considerations for Horticultural Crop Packaging

Fresh fruits and vegetables require packaging that addresses several technical challenges:

1. Respiration and Gas Exchange

Produce continues to respire after harvest, releasing CO₂ and consuming O₂. Packaging must regulate the internal atmosphere using modified atmosphere packaging (MAP). Smart biodegradable films with tailored gas permeability can slow respiration without inducing anaerobic conditions.

2. Moisture Control

Both dehydration and excess moisture lead to quality loss. Active films incorporating moisture absorbers or enhanced water-vapour regulation help maintain optimal humidity.

3. Microbial Spoilage

Surface microorganisms are a major cause of spoilage. Antimicrobial packaging (using essential oils, nanoparticles, organic acids) can significantly delay microbial growth.

4. Ethylene and Ripening

Ethylene accelerates ripening in climacteric fruits. Smart packaging can include ethylene scavengers or sensors to regulate ripening.

Benefits and Impact

Smart biodegradable packaging offers multiple advantages:

- Extended Shelf Life: Even a few extra days significantly reduce food waste and improve market availability.
- Improved Quality Retention: Better colour, texture, flavour, and nutrient retention increase consumer acceptance.
- Reduced Losses and Higher Profitability: Less spoilage benefits farmers, retailers, and supply chains.
- Sustainability Gains: Reduced fossil-carbon use, lower landfill waste, and support for circulareconomy initiatives.

Challenges and Implementation Issues

Despite its promise, several challenges limit largescale adoption:

- High cost of biopolymers and smart components.
- Performance limitations (mechanical and barrier properties often inferior to plastics).
- Scalability issues, as many films succeed at lab scale but not at industrial production levels.
- Regulatory concerns, especially regarding migration of active agents or nanoparticles into food.

Emerging Trends and Future Outlook

Key future directions include:

• Nanocomposites & Multifunctional Films: Incorporation of TiO₂, ZnO nanoparticles, essential oils, and natural extracts to improve antimicrobial and barrier properties.

- **Iot-Enabled Sensor Packaging:** Gas, temperature, and humidity sensors for real-time monitoring and dynamic release of active compounds.
- Waste-Derived Biopolymers: Use of agricultural residues (soy hulls, alfalfa, citrus peel) to reduce production costs.
- Lifecycle Assessment (LCA): Ensuring that new materials offer real net environmental benefits.

Conclusion

Smart biodegradable packaging presents a powerful combination of post-harvest quality enhancement and environmental sustainability, particularly for perishable horticultural produce. Integrating active

functionalities (antimicrobials, ethylene/moisture control) and intelligent features (sensors, indicators) helps extend shelf life, reduce losses, and strengthen supply-chain efficiency.

To move from laboratory innovation to commercial reality, further progress is needed in material performance, cost reduction, regulatory clearance, and waste-management infrastructure. For countries like India—where post-harvest losses in fruits and vegetables are high—investment in smart biodegradable packaging offers significant economic, environmental, and food-security benefits.

References

- 1. Application of Smart Packaging in Fruit and Vegetable Preservation: A Review. Foods, 14(3), 447.
- 2. Centre for Bioparticle Applications. Smart Bioplastic Food Packaging to Extend Shelf Life and Reduce Pollution.
- 3. Development and Application of Smart Packaging Solutions for Extending the Shelf Life of Fresh Produce. SHS Web of Conferences, 216 (2025) 01013.
- **4.** Evaluation of the Influence of Various Biodegradable Packaging Materials on Food Quality and Shelf Life. Rural Sustainability Research, 30(1), 2013.
- 5. Gupta, D., Bommisetty, C., & Madduri, C. (2024). Smart Biodegradable Food Packaging Using Active Nanocomposites: A Sustainable Future for Food Preservation. International Journal for Multidisciplinary Research (IJFMR).
- 6. Nasution, H., Harahap, H., Julianti, E., Safitri, A., & Jaafar, M. (2023). Smart Packaging Based on Polylactic Acid: The Effects of Antibacterial and Antioxidant Agents from Natural Extracts... Polymers, 15(20), 4103.