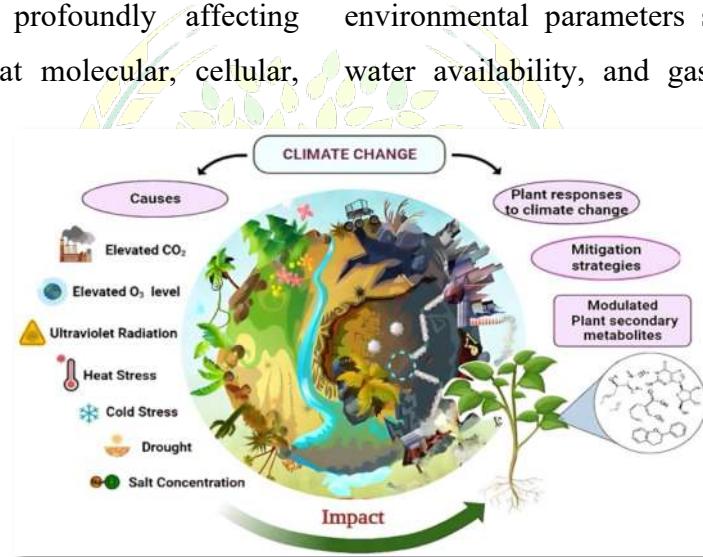


Climate Change and Biochemistry: Molecular and Metabolic Responses of Living Systems


ARTICLE ID: 0320

Priya Pandey¹, Sheetanu Singh¹, Garima Dixit²

¹Research Scholar, Department of Biochemistry, Acharya Narendra Deva University of Agriculture and Technology, Kumarganj, Ayodhya, India

²Research Scholar, Department of Food and Nutrition, Acharya Narendra Deva University of Agriculture and Technology, Kumarganj, Ayodhya, India

Climate change is one of the most pressing global challenges, profoundly affecting biological systems at molecular, cellular, and ecosystem levels. Rising temperatures, increased atmospheric carbon dioxide concentrations, altered precipitation patterns, and intensified environmental stresses directly influence the biochemical processes that sustain life. Since

metabolism, enzyme activity, and redox balance form the biochemical foundation of all living organisms, climate change exerts its effects primarily through biochemical mechanisms. Understanding these molecular and metabolic responses is essential for explaining how plants, microorganisms, animals, and humans adapt to—or succumb under—changing climatic conditions (Zandalinas et al., 2023).

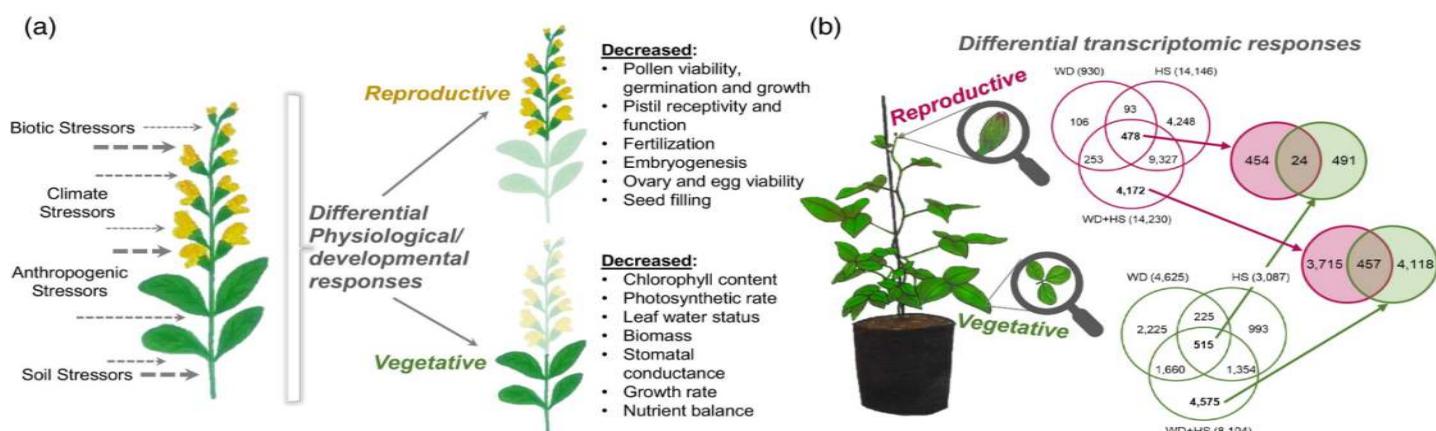
Biochemical Basis of Climate Change Effects

Biochemical reactions are highly sensitive to environmental parameters such as temperature, pH, water availability, and gas concentrations. Climate change alters these parameters, thereby affecting enzyme kinetics, membrane fluidity, and metabolic regulation. Elevated temperatures may initially accelerate reaction rates but can

also result in protein denaturation and enzyme inactivation. Similarly, changes in atmospheric CO₂ levels influence carbon assimilation and metabolic efficiency. These effects demonstrate that climate change disrupts cellular homeostasis by directly targeting the biochemical machinery of living systems (Lushchak & Storey, 2024).

Carbon Metabolism and Photosynthesis under Climate Change

The global carbon cycle is driven by biochemical processes including photosynthesis, respiration, and decomposition. Photosynthesis, mediated by ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), converts atmospheric CO₂ into organic compounds. Elevated CO₂ concentrations may temporarily enhance photosynthetic rates; however, increased temperatures reduce RuBisCO specificity and promote photorespiration, thereby limiting net carbon fixation (Fernie & Bauwe, 2024; Roy, 2024). Concurrently, higher temperatures stimulate plant respiration and microbial decomposition, increasing CO₂ release and generating positive feedback loops that further intensify climate change.


Oxidative Stress and Redox Homeostasis

One of the most universal biochemical responses to climate change is enhanced oxidative stress. Environmental stresses such as heat, drought, salinity, and pollution lead to excessive production of reactive oxygen species (ROS), including superoxide radicals, hydrogen peroxide, and hydroxyl radicals. When ROS generation exceeds cellular detoxification capacity, oxidative damage to lipids, proteins, and nucleic acids occurs. To maintain redox homeostasis, organisms

activate enzymatic antioxidants—such as superoxide dismutase, catalase, and glutathione peroxidase—as well as non-enzymatic antioxidants including glutathione and ascorbate. These antioxidant systems not only protect against oxidative damage but also regulate redox signaling essential for stress perception and adaptation (Hasanuzzaman et al., 2023; Lushchak & Storey, 2024).

Metabolic Reprogramming under Climate Stress

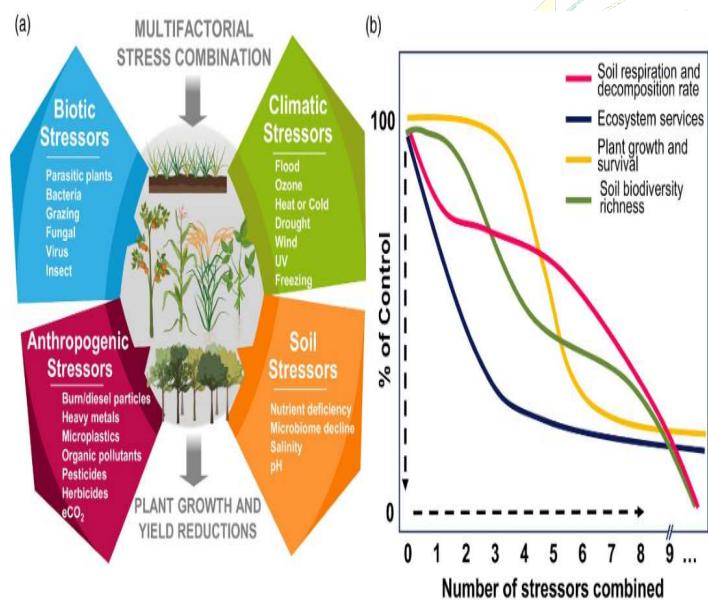

Climate change induces extensive metabolic reprogramming to ensure survival under adverse conditions. Primary metabolism is modified through alterations in carbohydrate, amino acid, and lipid pathways. Accumulation of osmoprotectants such as proline, soluble sugars, and polyols stabilizes proteins and cellular structures under drought and heat stress. Membrane lipid composition is adjusted to maintain fluidity under temperature extremes. Additionally, secondary metabolism is often upregulated, resulting in increased synthesis of phenolics, flavonoids, and other protective compounds that function as antioxidants and signaling molecules (Bulut et al., 2025; Kumar et al., 2023).

Figure 1. Differential responses of vegetative and reproductive tissues to combined abiotic stresses.

Plant Biochemical Responses to Climate Change

Plants exhibit complex biochemical adaptations to climate change due to their sessile nature. Heat shock proteins, antioxidant enzymes, and stress-responsive metabolites are strongly induced under climate-related stresses. Alterations in nitrogen and sulfur metabolism influence protein synthesis and redox balance, ultimately affecting growth, yield, and nutritional quality. These biochemical responses play a decisive role in crop resilience and productivity, making plant biochemistry central to food security under changing climatic conditions (Bulut et al., 2025; Zandalinas et al., 2023).

Figure 2. Impact of multifactorial stress combinations on plants, crops, ecosystems, and soil processes.

Microbial Biochemistry and Greenhouse Gas Emissions

Microorganisms play a critical role in climate change through their biochemical activities. Microbial pathways such as methanogenesis, nitrification, and denitrification are responsible for the production of methane and nitrous oxide—potent greenhouse gases.

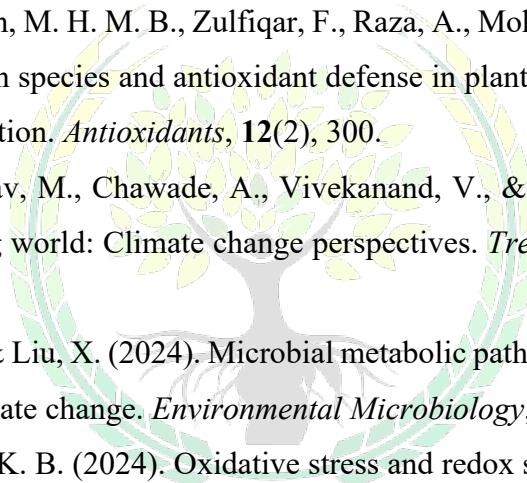
Climate-driven changes in soil temperature and moisture significantly influence microbial metabolism, thereby affecting greenhouse gas emissions and nutrient cycling. A detailed understanding of microbial biochemistry is essential for predicting climate feedback mechanisms and developing mitigation strategies (Liu et al., 2024).

Biochemical Impacts of Climate Change on Human Health

Climate change also influences human health by disrupting biochemical and metabolic processes. Heat stress alters enzyme activity, electrolyte balance, and energy metabolism, while air pollution intensifies oxidative stress and inflammatory pathways. Climate-induced changes in agriculture and food systems affect micronutrient availability, with long-term consequences for metabolic health. These biochemical disturbances are increasingly associated with cardiovascular diseases, metabolic disorders, and impaired immune responses (Romanello et al., 2024).

Biochemistry in Climate Change Adaptation and Mitigation

Biochemistry provides essential tools for addressing climate change through both adaptation and mitigation strategies. Advances in enzyme engineering, metabolic regulation, and redox biology facilitate the development of climate-resilient crops, enhanced photosynthetic efficiency, and sustainable bio-based alternatives such as biofuels and bioplastics. Integrating biochemical insights with systems biology and biotechnology is crucial for designing effective and sustainable climate solutions (Fernie & Bauwe, 2024).


Conclusion

Climate change is fundamentally a biochemical phenomenon that alters molecular and metabolic processes across all forms of life. From disrupted enzyme activity and redox imbalance to large-scale changes in carbon metabolism and greenhouse gas production, climate change reshapes the biochemical

foundation of living systems. A comprehensive biochemical understanding is therefore essential for predicting biological responses, protecting ecosystems, safeguarding human health, and developing sustainable strategies to cope with a changing climate.

References

1. Bulut, M., Karakas, E., & Fernie, A. R. (2025). Adjustments of plant primary metabolism in the face of climate change. *Journal of Experimental Botany*, **76**(17), 4804–4820.
2. Fernie, A. R., & Bauwe, H. (2024). Photorespiration and climate change: Metabolic integration and crop improvement perspectives. *Annual Review of Plant Biology*, **75**, 451–478.
3. Hasanuzzaman, M., Bhuyan, M. H. M. B., Zulfiqar, F., Raza, A., Mohsin, S. M., Mahmud, J. A., & Fujita, M. (2023). Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of redox regulation. *Antioxidants*, **12**(2), 300.
4. Kumar, M., Brar, A., Yadav, M., Chawade, A., Vivekanand, V., & Pareek, N. (2023). Plant secondary metabolism in a fluctuating world: Climate change perspectives. *Trends in Plant Science*, **28**(12), 1306–1322.
5. Liu, J., Hou, H., Zhao, L., & Liu, X. (2024). Microbial metabolic pathways regulating methane and nitrous oxide emissions under climate change. *Environmental Microbiology*, **26**(3), 1456–1472.
6. Lushchak, V. I., & Storey, K. B. (2024). Oxidative stress and redox signaling under environmental stress conditions. *Redox Biology*, **63**, 102743.
7. Romanello, M., Di Napoli, C., Drummond, P., et al. (2024). The 2024 report of the Lancet Countdown on health and climate change: Taking stock for action. *The Lancet*, **403**(10431), 1107–1152.
8. Roy, S. (2024). Revisiting changes in growth, physiology and stress responses of plants under the effect of enhanced CO₂ and temperature. *Plant and Cell Physiology*, **65**(1), 4–17.
9. Singh, R., Singh, P., & Prasad, S. M. (2025). Insights into molecular and biochemical approaches of multi-stress responses in horticultural crops. *Plant Growth Regulation*, **105**, 1–18.
10. Zandalinas, S. I., Fritschi, F. B., & Mittler, R. (2023). Global warming, climate change, and environmental pollution: Effects on plant metabolism and redox homeostasis. *Plant Physiology*, **191**(2), 805–820.

